
© 2016. Uniserver Consortium Partners. All rights reserved

D5.1 1st Report on Hypervisor / System /

Software Interface

Contract number 688540

Project website http://www.Uniserver2020.eu

Contractual deadline Project Month 9 (M9): 31st October 2016

Actual Delivery Date 16th November 2016

Dissemination level Public

Report Version 1.0

Main Authors Bin Wang (QUB), Christos Antonopoulos (UTH), Charalambos

Chalios (QUB), Georgios Karakonstantis (QUB), Srikumar

Venugopal (IBM), Mustafa Rafique (IBM), Christos Kalogirou (UTH),

Panos Koutsovasilis (UTH), Emmanouil Maroudas (UTH), Dimitrios

Nikolopoulos (QUB)

Reviewers Peter Lawthers (APM), Spyros Lalis (UTH)

Keywords Hypervisor, OpenStack, System Software Interface

Notice: The research leading to these results has received funding from the European Community’s

Horizon 2020 Programme for Research and Technical development under grant agreement no. 688540.

© 2016. Uniserver Consortium Partners. All rights reserved

http://www.uniserver2020.eu/

© 2016. Uniserver Consortium Partners. All rights reserved

Disclaimer

This deliverable has been prepared by the responsible Work Package of the Project in accordance with

the Consortium Agreement and the Grant Agreement Nr 688540. It solely reflects the opinion of the parties

to such agreements on a collective basis in the context of the project and to the extent foreseen in such

agreements.

Acknowledgements

The work presented in this document has been conducted in the context of the EU Horizon 2020. Uniserver

is a 36-month project that started on February 1st, 2016 and is funded by the European Commission. The

partners in the project are:

The Queen’s University of Belfast (QUB)

The University of Cyprus (UCY)

The University of Athens (UoA)

Applied Micro Circuits Corporation Deutschland Gmbh (APM)

ARM Holdings UK (ARM)

IBM Ireland Limited (IBM)

University of Thessaly (UTH)

WorldSensing (WSE)

Meritorious Audit Limited (MER)

Sparsity (SPA)

More information

Public Uniserver reports and other information pertaining to the project are available through the Uniserver

public Web site under http://www.Uniserver2020.eu.

Confidentiality Note

This document may not be copied, reproduced, or modified in whole or in part for any purpose without

written permission from the Uniserver Consortium. In addition to such written permission to copy,

reproduce, or modify this document in whole or part, an acknowledgement of the authors of the

document and all applicable portions of the copyright notice must be clearly referenced.

http://www.uniserver2020.eu/

© 2016. Uniserver Consortium Partners. All rights reserved

Change Log

Version Description of change

0.1 Initial draft

0.2 Add metrics of interest

0.3 Modify sections 2, 3

0.4 Modify Introduction

 Add metrics and APIs about Ceilometer,
Healthlog and StressLog

 Update Figure 1

0.5 and 0.6 Add detailed metrics for OpenStack

 Add Libvirt API extension

0.7 Reorganize Sections 2 and 3

0.8 Delete the redundant information and revise
the figures.

0.9 Add references

1.0 Integrate comments from partners, update
table of contents.

 Fix type and grammar errors

 Reorganize Section 2, 3

 Revise Figure 1

© 2016. Uniserver Consortium Partners. All rights reserved 4

Table of Contents

EXECUTIVE SUMMARY ... 7

1. INTRODUCTION ... 8

1.1. THE UNISERVER CROSS-LAYER SYSTEM ARCHITECTURE: DEFINITIONS AND ASSUMPTIONS 8

1.2. ORGANIZATION .. 11

2. METRICS OF INTEREST .. 12

2.1. OPENSTACK METRICS .. 12

2.2. HYPERVISOR METRICS ... 14

2.3. EXTENDED METRICS FOR UNISERVER ... 16

3. SYSTEM SOFTWARE INTERFACE AND API EXTENSIONS .. 20

3.1. LIBVIRT .. 20

3.1.1. Extending Libvirt API ... 21

3.1.2. Definition and Implementation of the Public API ... 21

3.1.3. Implementation of the Remote Control .. 22

3.1.4. Expose the New API in Virsh ... 23

3.1.5. Definition and Implementation of the Driver Methods ... 24

3.1.6. Libvirt Proposed Python Interface ... 25

3.2. HYPERVISOR API AND EXTENSION .. 27

3.2.1. Useful Existing KVM APIs .. 27

3.2.2. KVM API Extension ... 29

4. REFERENCES .. 30

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 5

Index of Figures

Figure 1: Potential exchange of information across system layers ... 9

Figure 2: Ceilometer Architecture .. 13

Figure 3: Libvirt structure and interface. The numbers indicate the different steps involved in extending the

API. .. 20

Figure 4: Implementation of virNodeSetFrequency function ... 22

Figure 5: Definition of the wire protocol of virNodeSetFrequency function ... 22

Figure 6: Remote dispatch of virNodeSetFrequency function ... 23

Figure 7: Virsh command of virNodeSetFrequency function ... 24

Figure 8: Bind virNodeSetFrequency function to perf ... 25

file:///D:/Uniserver%20Requirement/D5.1-v1.0_FOB-revised1.docx%23_Toc467145149
file:///D:/Uniserver%20Requirement/D5.1-v1.0_FOB-revised1.docx%23_Toc467145152
file:///D:/Uniserver%20Requirement/D5.1-v1.0_FOB-revised1.docx%23_Toc467145153
file:///D:/Uniserver%20Requirement/D5.1-v1.0_FOB-revised1.docx%23_Toc467145154
file:///D:/Uniserver%20Requirement/D5.1-v1.0_FOB-revised1.docx%23_Toc467145155
file:///D:/Uniserver%20Requirement/D5.1-v1.0_FOB-revised1.docx%23_Toc467145156

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 6

Index of Tables

Table 1: Ceilometer Metrics ... 13

Table 2: KVM State Metrics ... 15

Table 3: Uniserver metrics of interest – Source of information in the Uniserver Software / Hardware

ecosystem .. 16

Table 4: Libvirt API Metric.. 21

Table 5: KVM API Metric in Universer Project ... 28

file:///D:/Uniserver%20Requirement/D5.1-v1.0_FOB-revised1.docx%23_Toc467145146
file:///D:/Uniserver%20Requirement/D5.1-v1.0_FOB-revised1.docx%23_Toc467145146

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 7

Executive Summary

Uniserver seeks to improve the performance and energy efficiency in servers by automatically discovering the

capabilities of the underlying hardware components and extending their operation into new wider

Voltage/Frequency/Refresh rate (VFR) operating points than what the conventional worst case design dictates.

To fully utilize such new operating points and ensure easy adoption of the developed technologies, Uniserver

plans to port and enhance state-of-art software packages for virtualization (i.e. KVM) and resource

management (i.e. OpenStack), essential components of modern data-centres. A major breakthrough of

Uniserver lies not only on the utilization of existing mechanisms of such state-of-the art software packages on

ARM based micro-servers but more significantly on the extension of their capabilities. In particular, Uniserver

will enable the monitoring of the hardware behaviour by the system software as reported by the Health daemon

(specified in the deliverable D4.2) and will optimize system level metrics (at a node and rack granularity) by

tuning the extended operating points revealed by the Stress daemon and Predictor (specified in the deliverable

D4.3). An essential breakthrough of the Uniserver is the control and minimization of the effects of potential

hardware faults on system software and end-user applications, without incurring an overhead which would

outweigh the benefits of the extended margins.

The first step to achieve the aforementioned objectives, is to enable the communication of new vital information

from the hardware to system software and all the way up to the application layer. This is the target of this

deliverable: to specify the bidirectional communication between the hypervisor and the OpenStack

infrastructure enabling them to synergistically configure the system in a way compatible with application

requirements and hardware capabilities. OpenStack informs the hypervisor about the virtual resources

required by applications, whereas the hypervisor communicates hardware status, physical resources assigned

and associates detected faults with the VMs that are potentially affected. To minimize the overheads of the

new interface we need to ensure that only the required information is passed on to the next upper layer in a

way that is relevant and useful to the target layer. Therefore, in D5.1 we start by identifying the existing and

the Uniserver related metrics of interest at each layer, which we use as guidance for the selection of the

parameters that we need to monitor in each layer, as well as in the specification of the necessary

communication system software interface.

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 8

1. Introduction

The Uniserver project targets a wide range of use cases, ranging from deployments in remote locations close
to the end users to deployments in cloud data centers. To facilitate such diverse use cases, the Uniserver
platform must be equipped with a complete software stack able to manage efficiently any compute and storage
resources by offering easy installation, migration and replication of tasks, either at the node or server-rack
level [1]. Therefore, in Uniserver project state-of the art software packages for virtualization and resource
management will be ported on the targeted 64-bit ARM based micro-server, which was analyzed in the
deliverable D3.1. In particular, we will adopt a KVM [2] hypervisor which lends to the developed ecosystem the
numerous benefits provided by virtualization such as easier installation, replication, migration of tasks. At the
upper layer, Uniserver has selected to adopt the OpenStack [3] software framework, which is open source and
pairs well with popular existing enterprise and open source technologies. Note that both KVM and OpenStack
were only recently ported on 64-bit ARM based systems, while recently (October 2016) it was announced by
major software and processor vendors that OpenStack will be made commercially available at an enterprise-
grade, indicating the timely and novel character of the Uniserver developments at the software stack.

But above all a major breakthrough of the Uniserver project lies on the utilization of new wider
Voltage/Frequency/Refresh rate (VFR) operating points that are going to be exposed by the developed
mechanisms at the firmware level (Health and Stress Daemon, explained in deliverables D4.2 and D4.3).
Operation very close to the operating limits (essentially without any guardband as opposed to the traditional
paradigms) increases significantly the risk of errors within each core and memory components [4]. Therefore,
the system software needs to be enhanced with new mechanisms for effectively controlling and minimizing the
effects of potential faults, while trying to not incur significant overhead, which would outweigh the benefits of
operating at extending points. The operating points may dynamically change depending on the workload,
variations of environmental conditions, chip aging etc. and thus the system software should be able to decide
on the right energy efficient configuration parameters very fast and reliably [5]. To enable the efficient
management of each node and of the overall data-centre there is need to rethink the existing mechanisms and
communication interfaces and allow the exchange of new information about the behaviour of the hardware
from the bottom layers to hypervisor and on to the OpenStack. This is exactly the target of the deliverable D5.1,
which aims at specifying the bidirectional communication between the hypervisor and the OpenStack
infrastructure.

Before going into the details of such an interface next we describe some of the basic components of the system
and some potential ways in managing the extended operating points. This will help at this early stage of the
project to better understand the interaction between the system layers and identify the mechanisms and
extensions that will need to be explored in the next tasks of the project. Note that the design of the fault tolerant
hypervisor and the implementation of the power management policies is undertaken by the other tasks in work-
package 5 (WP5) and will be described in more detail in the next deliverables.

1.1. The Uniserver Cross-Layer System Architecture: Definitions and Assumptions

Figure 1 depicts the different layers of the Uniserver ecosystem and visualizes the flow of the information

between them through the essential components. One of the most fundamental assumptions in the system

architecture of the Uniserver platform is that each CPU and DRAM DIMM may have intrinsically different

capabilities. As explained in the deliverables D3.1 and D4.1 in the X-GENE2 [6] the chassis of the Uniserver

the CPU Voltage/Frequency can be set separately on each PMD [7] (consisting of 2 CPUs and each of 2 levels

of cache L1/L2) and the DRAM refresh-rate/Voltage/Frequency can be set per channel. As explained in the

deliverable D4.1 the configuration values such as Voltage, Frequency and Refresh rate of the system and their

subcomponents can be controlled by accessing the appropriate hardware sensor register and ACPI [8] state

register through the hardware registers and software (e.g. i2c for Linux) available on the X-Gene microserver.

Power and thermal of different hardware components such as DRAM, DIMMs, SoC and PMD can be recorded

in the X-Gene microserver through the available thermal and power sensors, whereas

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 9

correctable/uncorrectable errors within L2/L3 caches and DRAMs can be exposed to the software through the

Hardware Exposure Register Interface (HEI) described in deliverable D4.1.

At the firmware level, Uniserver introduces the Predictor, Health and Stress daemon. The Health daemon

(specified in deliverable D4.2) is a Linux daemon responsible for monitoring and logging the hardware state

on the so called HealthLog, taking first-level actions when errors occur and also act as an end-point gateway

for the hypervisor to access hardware metrics. On the other hand, the StressLog (specified in deliverable D4.3)

is a Linux daemon responsible for offline, on-demand stress testing APM [6] (ARM architecture-based)

computing systems and producing an output vector containing the new safe system VFR margins that will be

suggested to the hypervisor for future usage. It also produces log files that will record the raw data provided

the Hardware Exposure Interface (HEI) such as errors (correctable or uncorrectable) [9], system configuration

values (e.g. voltage, frequency, refresh rate), sensor readings and performance counters. The two logs are

differently used to provide information to different modules. In particular, Health daemon collects events

occurrence (errors and others) during normal operation and other related information and stores them to

logfiles for further use by the hypervisor, the predictor and other processes. On the other hand, Stresslog is

used to provide for an offline performance analysis of the server using real applications and application-specific

viruses. Predictor is another mechanism which tries to predict the HW behavior offering to the hypervisor

Figure 1: Potential exchange of information across system layers

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 10

estimations about potential failures helping to decide on the operating points. The predictor can be periodically

re-configured (by invoking the StressLog during idle periods) in case that a strange behavior is being detected

by the hypervisor or the OpenStack.

At the hypervisor layer, HW metrics related mainly to power and performance are already monitored such as

CPU and memory utilization, cache misses etc. by utilizing an existing API. In Uniserver we plan to enhance

such an API to make it able to collect and monitor Reliability related information by interacting with the

introduced daemons. For example, CPU errors could be acquired from Healthlog to Monitor CPU module

through new functions as explained in Section 3.

We would like to note here that the hypervisor (i.e. KVM) is a module within the kernel space [10] along with

other modules of the Operating System such as the scheduler, governors, cgroups etc. which are used to

manage and direct the overall system operation. The hypervisor is responsible for creating and running one or

more virtual machines (VMs) on the so called guest machines (i.e. in the userspace [11]). In general, in Linux,

the used Operating System (OS) in Uniserver that the memory is divided into two distinct the user space and

kernel space. The user space, is a set of locations where normal user processes run (i.e. everything other than

the kernel). The role of the OS kernel is to manage applications running in this space from messing with each

other, and the machine. The kernel space, is the location where the code of the kernel is stored, and executes

under. Processes running under the user space have access only to a limited part of memory, whereas the

kernel has access to all of the memory. Processes running in user space also don't have access to the kernel

space. User space processes can only access a small part of the kernel via an interface exposed by the kernel,

the system calls.

Going further-up the OpenStack, which is another guest layer for resource management, extracts information

for every virtual machine and the overall system using the so called Libvirt [12], which is a hypervisor-

independent virtualization API and toolkit that is able to interact with the virtualization capabilities of a range of

operating systems. Essentially, Libvirt is an intra-node manager that will be responsible for the communication

between the OpenStack and the hypervisor in Uniserver. Within the OpenStack, a dedicated module called

Ceilometer [12] talks with the Libvirt interface, which collects information and distributes it across all current

OpenStack core components.

The flow of information from the OpenStack towards the lower system software layers mainly include the

requirements for reliability that the system needs to provide. Generally, this information will be per VM (when

possible) reflecting the different Service-Level Agreement (SLA) [13] between the Cloud provider and the end-

user of each VM. Providing information about reliability requirements per VM allows the Uniserver framework

to utilize the underlying hardware optimally, by pushing each separate component (PMD, memory domain,

etc.) at the proper margins that maximize the targeted metric and at the same time ensuring the requested

reliability levels.

The design of those components that will be responsible to implement the policies for managing the reliability

level of the various components and mapping of VMs to hardware will determine the set of interfaces that will

need to be implemented between the various components and the exact flow of information.

One possible design, shown in Figure 1, that we will examine, implements all the policies selecting the reliability

level of each hardware component and mapping VM to resources at the userspace. Such a design minimizes

the development time by re-using well defined interfaces that Linux provides for configuring hardware

components and allocating resources to userspace components. OpenStack communicates the requirements

of reliability for every VM through Libvirt to the Resource Allocator which is a new component responsible for

implementing all the policies for choosing the optimal operating point of every HW component taking into

account the requirements of all VMs running on the microserver. Linux provide Governors which implements

policies for Voltage and Frequency scaling of CPUs. Governors provide a sysfs interface [10] to the user

applications to select the operating points of the machine. In Uniserver, we will potentially implement an

enhanced Governor that will get the required reliability for every hardware component as an input. It will consult

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 11

the predictor in order to find the operating points of the corresponding hardware component that match the

requested reliability level and apply the configuration. The Resource Allocator (RA) shown in the figure uses

the cgroups interface to allocate resources to VMs. cgroups is a vfs-based interface [14] that allows user

applications to apply restrictions to the amount of resources (e.g. number of CPUs, CPU time, amount of

memory, etc.) [15] each user process of the system can consume.

We would like to note here that the system and interactions described above provide the potential extensions

at the userspace; alternatively, the Uniserver related component that implements all the resource allocation

policies and selection of operation points for hardware parts can be implemented within the kernel. This design

would provide higher flexibility in resource allocation, but at the cost of development effort. For example,

cgroups provide a static way of mapping processes to resources. A more dynamic scheme would allow to

react faster in variations of the workload. In this scenario the Linux scheduler will be in charge of enforcing the

reliability requirements per VM, each Virtual CPU (VCPU) is mapped to a kernel thread and thus it can be

scheduled by the Linux scheduler. The reliability information [16] per VM will be communicated through the

KVM interface, which in this case will be the only interface between the userspace and the kernel space.

Finally, in both cases the KVM will need to be extended and implement the policies of choosing the optimal

configuration for every hardware resource of the system. As we said, this is the target of the rest of the tasks

in WP5 and the chosen implementation will be discussing in more detail in the following deliverables.

Concerning the communication interfaces which are the main target of this deliverable, we would like to stress

that in both potential implementations of the enhanced management/resource allocator module there is

additional information that need to be exchanged between the hypervisor and the OpenStack (i.e. Ceilometer).

The additional reliability information obtained the Health daemon and the predictor need to be packed and

propagated by the hypervisor to the OpenStack layer.

1.2. Organization

In Section 2 we describe the metrics of interest that are already being monitored by the OpenStack and

describe the Uniserver related extensions in the list of the metrics that need to be monitored for enabling the

management of the system operation at extended margins. In Section 3, we define and extend the interface

between Libvirt, OpenStack and KVM hypervisor that is the target of this deliverable.

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 12

2. Metrics of Interest

As discussed in the previous section, Uniserver’s system architecture spans across all layers of the system

stack. In this section, we discuss the existing metrics of interest as well as the Uniserver related extensions at

each layer starting from the OpenStack and moving down to the rest of the layers. This can help to identify the

information that is required to be exchanged between different layers of the system stack, and is essential for

specifying the potential communication interface in Section 3.

In general, the optimization of the operations at the extended margins in Uniserver will be guided by the system

requirements of the end-user for each VM, which are typically communicated to the Cloud provider through

SLAs. These workload-specific requirements reflect the main metrics of interest based on which the

OpenStack manages the individual nodes (or machines) that make up the cloud infrastructure (i.e. data-

centre). The main metrics of interest are the node Availability, Utilization and Energy Usage. In the context of

Uniserver, an additional metric, i.e., node reliability [9], has also been included in the list of metrics such that

nodes can be characterized based on the experienced error rates [17]. In brief, the main high-level metrics of

interest for Uniserver are the following:

 Availability: defined as the percentage of time a node is capable of serving its intended function. When

OpenStack controllers such as the scheduler and the performance monitoring system are not able to

reach the node, then it will be considered as unavailable. We will also consider VMs as being available

or unavailable depending on how they respond to OpenStack probes.

 Utilization: defined as the ratio of occupied resources (CPU, memory, disk, etc.) in a node to their total

capacity.

 Energy Usage: defined as the total energy usage of a node in kiloWattHour (kWh) for a specific time

period.

 Reliability: defined as the probability that a node could fail in a defined time horizon. MTBF (Mean Time

Between Failures) and MTTR (Mean Time to Recovery) are related measures for a node reliability. We

will classify a node as reliable or unreliable based on the probability of failure of its sub-components,

which in the context of Uniserver are CPU, memory, or disk. An unreliable node will have a higher

probability of failure, based on a yet to be defined threshold.

2.1. OpenStack Metrics

Currently to estimate the above metrics of interest from each node the OpenStack employs a data collection

service, i.e., Ceilometer [7], at each node that is a part of the OpenStack cluster, which gathers information

from the local Libvirt daemons. The information collected by Ceilometer is used by the OpenStack to monitor

the ‘health’ of the physical nodes on which virtual machines are running and appropriately managing the

underlying resources based on the user requirements. The details of the OpenStack will be discussed in WP6,

however, in brief as shown in Figure 2, the Ceilometer consists of the following:

 Polling agent: Daemon that polls OpenStack services and define meters to measure a specific

aspect of resource usage

 Notification agent: Daemon that listens to notifications and generates events

 Collector: Daemon that gather and record event and metering data created by Agents

 API: Service to query and view the recorded data

Gnocchi is a time series database, which provides optimized storage and querying for the metrics of interest.

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 13

Figure 2: Ceilometer Architecture

Table 1 describes the metrics that are already being collected by the Ceilometer.

Table 1: Ceilometer Metrics

Component Metric Metric Information

Instance Name Name of the instance

 UUID UUID associated with the instance

CPU Number Number of CPUs

 Time Cumulative CPU time

 CPU_util CPU utilization in percentage

 l3_cache_usage Amount of CPU L3 cache used

Memory usage Amount of memory used

 resident Amount of resident memory

 total Total system bandwidth from one level of

cache

 local Bandwidth of memory traffic for a memory

controller

Perf Events CPU_cycles Number of CPU cycles one instruction needs

 instructions Count of instructions

 cache_references Count of cache hits

 cache_misses Count of caches misses

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 14

Component Metric Metric Information

Network name Name of the vNIC

(Virtual) mac MAC address

 Fref Filter ref

 parameters Miscellaneous parameters

 rx_bytes Number of received bytes

 rx_packets Number of received packets

 tx_bytes Number of transmitted bytes

 tx_packets Number of transmitted packets

 rx_bytes_rate Rate of received bytes

 tx_bytes_rate Rate of transmitted bytes

Disk device Device name for the disk

 read_bytes Number of bytes read

 read_requests Number of read operations

 write_bytes Number of bytes written

 write_requests Number of write operations

 errors Number of errors

 read_bytes_rate Number of bytes read per second

 read_requests_rate Number of read operations per second

 write_bytes_rate Number of bytes written per second

 write_requests_rate Number of write operations per second

 disk_latency Average disk latency

 iops_count Number input/output operations per second

(IOPS)

 capacity Capacity of the disk

 allocation Allocation of the disk

 Physical Usage of the disk

2.2. Hypervisor Metrics

As we discussed in Section 1, in Uniserver we will use KVM hypervisor to provide virtualization services, and

gather information from the introduced daemons and relate it to the executed VMs. This information will be

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 15

propagated to the OpenStack through the Libvirt interface for managing the resources at the server granularity,

and will be used by the hypervisor for optimizing the system operation at the node granularity.

Currently, the KVM has already modules that collect various system metrics-information for managing the

system operation. In particular, the hypervisor used the kvm_stat which is essentially a Python [18] script which

retrieves runtime statistics from the KVM kernel module. The kvm_stat command is used to diagnose guest

behavior visible to the hypervisor, such as performance related issues with guests. Currently, the reported

statistics are for the entire system and the behavior of all running guests is reported. Table 2 details the basic

KVM metrics from kvm_stat:

Table 2: KVM State Metrics

Metric Metric Information

efer_reload The number of Extended Feature Enable Register (EFER) reloads

fpu_reload

The number of times a VMENTRY reloaded the FPU state. The

fpu_reload is incremented when a guest is using the Floating Point

Unit (FPU).

halt_exits Number of guest exits due to halt calls. This type of exit is usually

seen when a guest is idle.

halt_wakeup Number of wakeups from a halt

host_state_reload Count of full reloads of the host state (currently tallies MSR setup and

guest MSR reads).

Hypercalls Number of guest hypervisor service calls.

insn_emulation Number of guest instructions emulated by the host.

insn_emulation_fail Number of failed insn_emulation attempts.

io_exits Number of guest exits from I/O port accesses.

irq_exits Number of guest exits due to external interrupts.

irq_injections Number of interrupts sent to guests.

irq_window Number of guest exits from an outstanding interrupt window.

Largepages Number of large pages currently in use.

mmio_exits Number of guest exits due to memory mapped I/O (MMIO) accesses.

mmu_cache_miss Number of KVM MMU shadow pages created.

mmu_flooded Detection count of excessive write operations to an MMU page. This

counts detected write operations not of individual write operations.

mmu_pde_zapped Number of page directory entry (PDE) destruction operations.

mmu_pte_updated Number of page table entry (PTE) destruction operations.

mmu_pte_write Number of guest page table entry (PTE) write operations.

mmu_recycled Number of shadow pages that can be reclaimed.

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 16

Metric Metric Information

mmu_shadow_zapped Number of invalidated shadow pages.

mmu_unsync Number of non-synchronized pages which are not yet unlinked.

nmi_injections Number of Non-maskable Interrupt (NMI) injections to the guest.

nmi_window Number of guest exits from (outstanding) Non-maskable Interrupt

(NMI) windows.

pf_fixed Number of fixed (non-paging) page table entry (PTE) maps.

pf_guest Number of page faults injected into guests.

remote_tlb_flush Number of remote (sibling CPU) Translation Lookaside Buffer (TLB)

flush requests.

request_irq Number of guest interrupt window request exits.

signal_exits Number of guest exits due to pending signals from the host.

tlb_flush Number of tlb_flush operations performed by the hypervisor.

Exits The count of all VMEXIT calls.

2.3. Extended Metrics for Uniserver

In addition to the existing metrics of interest described above, in Uniserver platform, the hypervisor will have

access to additional information for monitoring the status of the hardware which will be made available through

the introduced Health, Stress and Predictor daemons which have been elaborated in detail in deliverables

D4.2 and D4.3. Note that part of the additional monitored information will also be propagated to the OpenStack.

Based on the information vectors defined in D4.2 and the HEI capabilities defined in D4.1 we have summarized

in the Table 3 the metrics that will be offered by the hypervisor to the Libvirt. For each metric, the table also

defines the source of information in the Uniserver software and hardware ecosystem.

We plan to proceed with an initial implementation of the Libvirt extentions to provide these metrics based on

information sources that are available from typical interfaces of Linux systems, such as the proc and sys

pseudofilesystems, NetLink sockets which serve as a communication channel between kernel and userspace

processes, as well as directly from the target XGene hardware. When the Health daemon will be released, we

will switch to an implementation for these metrics using HealthLog as the primary source of information

whenever possible.

Metric Source

Number of CPUs /proc/CPUinfo

CPU capacity (MHz) /proc/CPUinfo

Average CPU utilization (% and MHz) /proc/stat

Per core CPU utilization (% and MHz) /proc/stat

Table 3: Uniserver metrics of interest – Source of information in the Uniserver Software / Hardware

ecosystem

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 17

Metric Source

CPU capacity reserved for throttling (% and MHz)
/sys/devices/system/CPU/

Derived metric, see below

Total memory (MB) /proc/meminfo

Available memory (% and MB) /proc/meminfo

Memory speed / refresh rate (MHz) HEALTHLOG

Cached memory (% and MB) /proc/meminfo

Memory used by the individual VM (% and MB) Libvirt (/proc/PID/stat)

Memory used by all VMs (% and MB) Libvirt (/proc/PID/stat)

Contention for memory (% and MB)
/proc/meminfo

Derived metric, see below

Total memory swap space (MB) /proc/meminfo

Wait time for individual VM in swapping (% and

msec.)

NetLink Socket

Derived metric, see below

Average wait time for all VMs in swapping (% and

msec.)

NetLink Socket

Derived metric, see below

CPU wait time (msec.) /proc/stat

CPU contention time (% and msec.)
/proc/loadavg, /proc/CPUinfo

Derived metric, see below

CPU idle time (% and msec.) /proc/stat

CPU system time (% and msec.) /proc/stat

CPU power state optimization (i.e., optimized for

power or performance)
/sys/devices/CPU/

CPU time running at maximum utilization (msec.)
/proc/loadavg

Kernel extension required, see below

VM interruption time to run system services for VM

or other VM (msec.)

/proc/PID/stat

(execution time - guest time)

Number of VMs Libvirt

Number of active VMs Libvirt

Overall power consumption of the host (Watts) HEALTHLOG

Power consumption by the memory (Watts) HEALTHLOG

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 18

Metric Source

CPU temperature per core (Celsius) HEI

Average CPU temperature of the host (Celsius) HEALTHLOG

Overall memory errors rate (errors per minute) HEALTHLOG

Overall CPU errors rate (errors per minute) HEALTHLOG (all caches)

Number of L1/L2/L3 cache errors HEALTHLOG

Frequency of L1/L2/L3 cache errors (errors per

minute)
HEALTHLOG

Number of single bit CPU errors HEALTHLOG (all caches)

Frequency of single bit CPU errors (errors per

minute)
HEALTHLOG (all caches)

Number of multi-bit CPU errors HEALTHLOG (L2/L3 caches)

Frequency of multi-bit CPU errors (errors per

minutes)
HEALTHLOG

Number of single bit memory errors HEALTHLOG

Frequency of single bit memory errors (errors per

minute)
HEALTHLOG

Number of multi-bit memory errors HEALTHLOG

Frequency of multi-bit memory errors (errors per

minute)
HEALTHLOG

Number of single bit L1/L2/L3 cache errors HEALTHLOG

Frequency of single bit L1/L2/L3 cache errors

(errors per minute)
HEALTHLOG

Number of multi-bit L2/L3 cache errors HEALTHLOG

Frequency of multi-bit L2/L3 cache errors (errors per

minute)
HEALTHLOG

Note that CPU capacity reserved for throttling is calculated as:

= 1 -

The memory contention is calculated as:

Values greater than 1 mean that the system is under memory contention.

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 19

Furthermore, the CPU contention is calculated as:

=

Values greater than 1 mean that the system is under CPU contention.

The wait time individual VMs spent in swapping can be attained through a NetLink socket. The average wait

time for all VMs in swapping can be calculated by combining the wait time for individual VM in swapping for

all VMs.

Finally, the time CPUs run at maximum utilization (msec.) can be calculated as follows:

A new timestamp is set when the system load reaches the number of CPUs. When the system load drops

below the number of CPUs, the difference between current time and the timestamp adds to the total CPU max

utilization time and the timestamp resets. This information will be exported through an extension of the

/proc/loadavg interface.

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 20

3. System Software Interface and API Extensions

Having identified the metrics of interest and the sources of the required information, in this section we describe

in more detail the Libvirt API between OpenStack and hypervisor and specify the possible extensions which

we will introduce for enabling the exchange of the metrics of interest between the two layers.

3.1. Libvirt

Libvirt is a hypervisor-independent virtualization API [19] and toolkit that is able to interact with the virtualization

capabilities of a range of operating systems. Libvirt already supports plenty of configuration options and

manages virtual machines and the virtual machine storage and network efficiently. It also supports different

virtualization hypervisors among them the KVM/QEMU and it offers bindings in other languages such as

Python. OpenStack exploits the Python interface of the Libvirt to extract information for a virtual machine or

the system and for also handling any functionality of the virtual machines. Figure 3 shows the structure of

Libvirt.

Figure 3: Libvirt structure and interface. The numbers indicate the different steps involved in

extending the API.

Libvirt consists of two parts: (a) a public API for third-party applications to use the library, and (b) a driver API.

The latter contains the drivers, which enable communication with different hypervisor implementations. The

drivers implement a common API to communicate with Libvirt, which is internally translated to the API each

hypervisor implementation exports. The goal is to interact with hypervisors and virtual machines in a common

way, regardless of the hypervisor implementation. However, when an external application communicates with

Libvirt, it uses an URI, that defines, via the virInitialize API, which driver to use.

Furthermore, Libvirt offers remote management facilities by implementing a remote driver on the client and a

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 21

daemon for handling requests, called libvirtd, on the server side. Requests from a client are tunneled through

the remote driver to the server, where the specific hypervisor is running. The libvirtd on the server receives the

remote commands and locally invokes the appropriate driver.

The last piece of Libvirt software is Virsh [20], which is a virtualization shell built on top of Libvirt. This shell

permits use the Libvirt functionality, but in an interactive, shell-like fashion.

Table 4 gives the details of the existing API used to collect and record VM information.

Table 4: Libvirt API Metric

API API Information

get_max_memory Get the maximum memory allocation.

get_info Get information about a domain

get_xml_desc Get the XML description of a domain.

get_scheduler_type Get the scheduler type.

get_scheduler_parameters Get the array of scheduler parameters.

pin_vCPU Pins a domain vCPU to a bitmap of physical CPUs.

get_vCPUs get_vCPUs dom maxinfo maplen returns the pinning information for a

domain.

get_pCPU_stats dom Returns the physical CPU stats for a domain.

 get_max_vCPUs Returns the maximum number of vCPUs supported for this domain.

get_domains Get the active and/or inactive domains using the most efficient method

available.

get_domains_and_infos This gets the active and/or inactive domains and the domain info for each

one using the most efficient method available.

3.1.1. Extending Libvirt API

In the context of Uniserver Libvirt is going to be extended to enrich the information exchanged between the

node and the cloud management framework (OpenStack). Beyond monitoring the status and health of VMs,

the additional information allows OpenStack to monitor the status, configuration and health (errors) of the node.

The following subsections discuss in more detail the steps involved in extending the Libvirt API. As a running

example we use the implementation of a new function which allows the user to change the frequency of the

cores.

3.1.2. Definition and Implementation of the Public API

The first step (Figure 3) is the definition and implementation of the new function (Figure 4) serving as the public
API for the new functionality. The function prototype is declared in the public header file and is exported so
that any other program is able to use it. The public headers are included in include/libvirt/ and the function
name should be added in src/libvirt_public.syms in order to be exported. The function of our running example
is implemented in src/libvirt-domain.c, wiring up the public API with the internal driver API. After a number of

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 22

validity checks, the control is passed to the driver implementation.

3.1.3. Implementation of the Remote Control

The implementation of the remote control (Figure 3, step 2) consists of the following:

 definition of the wire protocol

 implementation of the RPC client

 implementation of the server side dispatcher

Two new structs are needed for each new function for the API in src/remote/remote_protocl.x. The

structs describe the parameters that are passed to the remote function and the value that is returned

respectively. However, if the remote function returns just 0 or -1, as is the case in our running example, only

the first struct is required. Next, an identifier for the new RPC must be reserved in the remote_procedure enum

for each new function. The changes are shown in (Figure 5).

int virNodeSetFrequency(virConnectPtr conn,

 int core,

 const char *frequency)

{

 VIR_DEBUG("conn=%p, core=%d, frequency=%s", conn, core, frequency);

 virResetLastError();

 virCheckConnectReturn(conn, -1);

 if (conn->driver->nodeSetFrequency) {

 int ret;

 ret = conn->driver->nodeSetFrequency(conn, core, frequency);

 if (ret < 0)

 goto error;

 return ret;

 }

 virReportUnsupportedError();

 error:

 virDispatchError(conn);

 return -1;

}

struct remote_domain_set_frequency_args {

 int core;

 remote_string frequency;

};

enum remote_procedure {

…

REMOTE_PROC_NODE_SET_FREQUENCY = 374,

};

Figure 4: Implementation of virNodeSetFrequency function

Figure 5: Definition of the wire protocol of virNodeSetFrequency function

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 23

Finally, running 'make' in the src/ directory is essential in order to create the .c and .h that are required by the

remote protocol code. The generated .h files are used by the RPC client. The remote method calls are

generated in src/remote/remote_driver.c. These files are also used by the server side remote dispatcher. The

server side dispatcher is implemented in the daemon/remote.c (Figure 6). Its function is mainly to deserialize

the RPC arguments and invoke the public API function implementing the service requested by the RPC on the

node. After completing the three aforementioned implementation steps of the remote call, and having updated

all the generated files, it is also essential to update the src/remote_protocol-structs file.

3.1.4. Expose the New API in Virsh

A new command for each new function can be added in Virsh (Figure 3, step 3).

Each command needs two structs: (a) the vshCmdInfo struct, which contains information on the command and

the help text, and (b) the vshCmdOptDef struct that contains the parameters that are needed by the function

implementing the command. Also the new command has to be added in the command array. These changes

take place into the tools/ directory and the implementation of the new command should be added in the

appropriate file according to the functionality of the new command (Figure 7).

static int

remoteDispatchNodeSetFrequency(virNetServerPtr server ATTRIBUTE_UNUSED,

 virNetServerClientPtr client,

 virNetMessagePtr msg ATTRIBUTE_UNUSED,

 virNetMessageErrorPtr rerr,

 remote_node_set_frequency_args *args)

{

 int rv = -1;

 char *frequency;

 struct daemonClientPrivate *priv =

virNetServerClientGetPrivateData(client);

 if (!priv->conn) {

 virReportError(VIR_ERR_INTERNAL_ERROR, "%s", _("connection not

open"));

 goto cleanup;

 }

 frequency = args->frequency ? *args->frequency : NULL;

 if (virNodeSetFrequency(priv->conn, args->core, frequency) < 0)

 goto cleanup;

 rv = 0;

 cleanup:

 if (rv < 0)

 virNetMessageSaveError(rerr);

 return rv;

}

Figure 6: Remote dispatch of virNodeSetFrequency function

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 24

3.1.5. Definition and Implementation of the Driver Methods

In this step, the new public API function is associated with a driver (Figure 3, step 4). We add the prototype of

the new function to the header file of the hypervisor driver functions /src/driver-hypervisor.h. Moreover, we add

the respective fields, which associate the new method with the function that implements it, to struct

static const vshCmdInfo info_frequency[] = {

 {.name = "help",

 .data = N_("set frequency")

 },

 {.name = "desc",

 .data = N_("Set frequency of the specific core.")

 },

 {.name = NULL}

};

static const vshCmdOptDef opts_frequency[] = {

 {.name = "core",

 .type = VSH_OT_INT,

 .help = N_("core id")

 },

 {.name = "frequency",

 .type = VSH_OT_STRING,

 .help = N_("frequency number")

 },

 {.name = NULL}

};

static bool

cmdNodeSetFrequency(vshControl *ctl, const vshCmd *cmd)

{

 int core;

 const char *frequency = NULL;

 int result;

 virshControlPtr priv = ctl->privData;

 if (vshCommandOptInt(ctl, cmd, "core", &core) < 0)

 return false;

 if (vshCommandOptStringReq(ctl, cmd, "frequency", &frequency) < 0)

 return false;

 if ((result = virNodeSetFrequency(priv->conn,core,frequency)) < 0)

 return false;

 vshPrint(ctl, "%d\n", result);

 return true;

}

Figure 7: Virsh command of virNodeSetFrequency function

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 25

virHypervisorDriver. The next step is to implement the functions at the drivers of hypervisors of interest (in our

case QEMU/KVM).

More specifically, the functionality is added to QEMU and the function is added in /src/qemu/qemu-driver.c. In

order to implement the virHostSetFrequency that changes the frequency of the corresponding core, the perf-

events API must be extended. Namely, the changes take place into the virPerfRdtEnable function (Figure 8).

The fields of the rdt_attr struct are changed in order to support the current functionality and the syscall function

is used with the appropriate parameters as shown below. Finally, for the activation of the event the respective

ioctl function is called.

3.1.6. Libvirt Proposed Python Interface

OpenStack can extract information from hypervisor through Libvirt using the Python interface.

The virConnect class represents the connection to the hypervisor and it is identified by a Uniform Resource

Identifier (URI). Libvirt supports both local and remote connections to hypervisors. The path and the scheme

of the URI specify the hypervisor and the host part the location.

Local URIs:

 driver:///system

 driver:///session

 driver+unix:///system

 driver+unix:///session

if (event->type == VIR_PERF_EVENT_CYCLES){

 memset(&rdt_attr, 0, sizeof(rdt_attr));

 rdt_attr.size = sizeof(rdt_attr);

 rdt_attr.type = PERF_TYPE_HARDWARE;

 rdt_attr.config = PERF_COUNT_HW_CPU_CYCLES;

 rdt_attr.inherit = 1;

 rdt_attr.disabled = 1;

 rdt_attr.enable_on_exec = 0;

 event->fd = syscall(__NR_perf_event_open,&rdt_attr, pid, -1, -1, 0);

 if (event->fd < 0) {

virReportSystemError(errno,_("Unable to open perf type=%d for

pid=%d"), event_type, pid);

 goto error;

 }

 if (ioctl(event->fd, PERF_EVENT_IOC_ENABLE) < 0) {

virReportSystemError(errno,_("Unable to enable perf event for

%s"), virPerfEventTypeToString(event->type));

 goto error;

 }

 event->enabled = true;

 return 0;

}

Figure 8: Bind virNodeSetFrequency function to perf

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 26

Remote URIs:

 driver[+transport]://[username@][hostname][:port]/[path][?extraparameters]

The virDomain class represents the domain name. The domain can be specified via one of the following

unique identifiers:

 ID: a positive integer that is unique for each domain within a single host. Can be used for active

domains only.

 Name: a short string that is unique for each domain within a single host. Can be used for both active

and inactive domains.

 UUID: 16 unsigned bytes, unique for each domain on any host.

For metrics already implemented within Libvirt, we plan to port the implementation to ARM / APM XGene2/3

adhering to the existing interface. For new metrics and control functionality of particular interest to the Uniserver

project, Libvirt is going to be extended and the functionality is going to be offered to OpenStack through the

following Python API:

 virConnect::getHostCPUStatisticsUniserver(self)

getHostCPUStatisticsUniserver is used to obtain information about the CPUs. If successful it returns

a list of the number of the CPUs, the reserved capacity reserved for throttling (%) and the frequency

of each core (MHz). If it fails, None is returned

 virConnect::getHostMemoryStatisticsUniserver(self)

getHostMemoryStatisticsUniserver is used to obtain information about the memory of the host. If

successful it returns a list of the total memory size (MB), the available memory size (% and MB), the

memory speed (MHz), the cached memory (% and MB) and the total memory swap space (MB). If it

fails, None is returned.

 virDomain::getDomainStatisticsUniserver(self)

getDomainsStatisticsUniserver returns the memory usage (% and MB), the VM interruption time to

run system services for the domain or other domains (msec) and the wait time in swapping (msec). If

it fails, None is returned.

 virConnect::getDomainsStatisticsUniserver(self)

getDomainsStatisticsUniserver returns a list of the number of the domains, the number of the active

domains, the total memory usage (MB) and the average wait time in swapping of all domains (msec).

If it fails, None is returned.

 virConnect::getHostSystemStatisticsUniserver(self)

getHostTimeUniserver is used to obtain information about the system. It returns a list of the average

utilization of the CPU (%), the wait time (%), the idle time (%) and the system time (%), the utilization

of each core (%) and the CPU time running at maximum utilization (msec.). If it fails, None is

returned.

 virConnect::getHostContentionStatistics(self)

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 27

getHostContentionStatistics is used to obtain information about the system contention. It returns a

list of the contention of the memory (% and MB) and the contention of the CPU (% and msec). If it

fails, None is returned.

 virConnect::getHostGovernor(self)

getHostGovernor returns a string of the governor of the system. If it fails, Null is returned.

 virConnect::getHostPowerConsumptionUniserver(self)

getHostPowerConsumptionUniserver is used to monitor the power consumption of the system. It

returns a list of the power consumption of the CPU (Watt) and the memory (Watt). If it fails, None is

returned.

 virConnect::getHostTemperatureUniserver(self)

getHostTemperatureUniserver is used to monitor the temperature of the system. It returns a list of

the average CPU temperature (Celcius) and the cores temperature (Celcius). If it fails, None is

returned.

 virConnect::getCorrectableErrorsUniserver(self)

getCorrectableErrorsUniserver is used to obtain the number and the frequency of the correctable

errors that occurred in the system. It returns a list of the total number and the frequency of L2, L3,

DRAM and MCU correctable errors. If it fails, None is returned.

 virConnect::getUncorrectableErrorsUniserver(self)

getUncorrectableErrorsUniserver is used to obtain the number and the frequency of the

uncorrectable errors that occurred in the system. It returns a list of the total number and the

frequency of L2, L3, DRAM and MCU uncorrectable errors. If it fails, None is returned.

3.2. Hypervisor API and Extension

The KVM API is a set of input/output control system calls (ioctls) that are issued to control various aspects of

a virtual machine. The ioctls belong to three classes.

 System ioctls: These query and set global attributes which affect the whole KVM subsystem. In

addition a system ioctl is used to create virtual machines.

 VM ioctls: These query and set attributes that affect an entire virtual machine, for example memory

layout. In addition a VM ioctl is used to create virtual CPUs (vCPUs). Only run VM ioctls from the

same process (address space) that was used to create the VM.

 vCPU ioctls: These query and set attributes that control the operation of a single virtual CPU. Only

run vCPU ioctls from the same thread that was used to create the vCPU.

3.2.1. Useful Existing KVM APIs

Table 5 enlists some useful hypercalls to provide insights into the available system calls at the KVM level.

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 28

Table 5: KVM API Metric in Universer Project

 Metric Metric Information

KVM_GET_VCPU_MMAP_SIZE Get size of vCPU mmap area

KVM_GET_DIRTY_LOG

Given a memory slot, return a bitmap containing any pages

dirtied since the last call to this ioctl.

KVM_GET_REGS

Reads the general purpose registers from the vCPU.

KVM_GET_SREGS Reads special registers from the vCPU.

KVM_GET_MSRS Reads model-specific registers from the vCPU.

KVM_GET_FPU Reads the floating point state from the vCPU.

KVM_GET_CLOCK Gets the current timestamp of KVM clock as seen by the

current guest.

KVM_GET_VCPU_EVENTS Gets currently pending exceptions, interrupts, and NMIs as

well as related states of the vCPU.

KVM_GET_DEBUGREGS Reads debug registers from the vCPU.

KVM_GET_MP_STATE Returns the vCPU's current "multiprocessing state" (though

also valid on uniprocessor guests).

KVM_GET_TSC_KHZ Returns the tsc frequency of the guest.

KVM_GET_LAPIC Reads the Local APIC registers and copies them into the

input argument.

KVM_PPC_GET_SMMU_INFO This populates and returns a structure describing the

features of the "Server" class MMU emulation supported by

KVM.

KVM_PPC_GET_HTAB_FD

This returns a file descriptor that can be used either to read

out the entries in the guest's hashed page table (HPT), or to

write entries to initialize the HPT.

KVM_GET_REG_LIST

This ioctl returns the guest registers that are supported for

the KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.

KVM_S390_GET_SKEYS This ioctl is used to get guest storage key values on the

s390 architecture.

KVM_S390_GET_IRQ_STATE This ioctl allows userspace to retrieve the complete state of

all currently pending interrupts in a single buffer.

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 29

3.2.2. KVM API Extension

In addition to the above API and monitored metrics, as we said hypervisor will have access to the additional

information that will be collected by the Health, Stress and Predictor daemons as specified in WP4 deliverables,

i.e. D4.2 and D4.3. It is expected that a new set of functions will be implemented such as

get_healthlog_memory(dimm id) for providing the relevant information vector (i.e. error type

(correctable/uncorrectable), …) about the particular errors occurring in a specific DIMM when requested by

the hypervisor. Similarly, functions for allowing the hypervisor to query the other additional Uniserver related

modules for specific CPU/memory events will also be utilized.

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 30

4. References

[1] K. V. Vishwanath, A. Greenberg and D. A. Reed, “Modular data centers: how to design them?,” in 1st

Workshop on Large-Scale System and Application Performance.

[2] H. Irfan, “Virtualization with KVM,” Linux J., p. 166, 2008.

[3] OpenStack, “Open source software for creating private and public clouds,” [Online]. Available:

https://www.openstack.org/.

[4] V. Sridharan and D. Liberty, “A study of dram failures in the field,” in In Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12.

[5] B. Schroeder and G. Gibson, “A large-scale study of failures in high-performance computing systems,”

in In Dependable Systems and Networks, 2006.

[6] APM, “X-Gene: World’s First ARMv8 64-bit Server on a Chip Solution,” [Online]. Available:

https://www.apm.com/products/data-center/x-gene-family/x-gene/.

[7] Intel Corporation, “Intel 64 and IA-32 Architectures Software Developers Manual. Combined Volumes:

1, 2A, 2B, 2C, 3A, 3B and 3C,” September 2014.

[8] “ACPI Platform,” [Online]. Available:

https://firmware.intel.com/sites/default/files/resources/A_Tour_beyond_BIOS_Implementing_APEI_with

_UEFI_White_Paper.pdf.

[9] P. Nikolaou, Y. Sazeides, L. Ndreu and M. Kleanthous, “Modeling the implications of DRAM failures

and protection techniques on datacenter TCO,” in In Proceedings of the 48th International Symposium

on Microarchitecture (MICRO-48), 2015.

[10] “Linaro Kernel,” [Online]. Available: https://wiki.linaro.org/LEG/Engineering/Kernel/RAS.

[11] A. Kleen, “Mcelog: memory error handling in user space”.

[12] libvirt, “implementing a new API in libvirt,” [Online]. Available: http://libvirt.org/api_extension.html.

[13] OpenStack, “OpenStack Metering Using Ceilometer,” [Online]. Available:

https://www.mirantis.com/blog/openstack-metering-using-ceilometer/.

[14] D. Hardy, M. Kleanthous, I. Sideris, A. Saidi, E. Ozer and Y. Sazeides, “An analytical framework for

estimating tco and exploring data center design space,” in International Symposium on Performance

Analysis of Systems and Software.

[15] “Linaro RAS git,” [Online]. Available: https://git.fedorahosted.org/git/rasdaemon.git.

[16] X. Li, K. Shen, M. C. Huang and L. Chu, “A memory soft error measurement on production systems,” in

In Annual Technical Conference on Proceedings of the USENIX Annual Technical Conference, 2007.

D5.1 1st Report on Hypervisor / System Software Interface

© 2016. UniServer Consortium Partners. All rights reserved 31

[17] A. Saleh, J. Serrano and J. Patel, “Reliability of scrubbing recoverytechniques for memory systems,” in

Reliability IEEE Transactions.

[18] “Error Handling Driver,” [Online]. Available: http://lxr.free-

electrons.com/source/drivers/edac/xgene_edac.c?v=4.3#L479.

[19] P. Org, “Python Interface Definition,” [Online]. Available: https://www.python.org/.

[20] L. Group, “Virsh Command Reference,” [Online]. Available: http://libvirt.org/virshcmdref.html.

[END OF DOCUMENT]

