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Glossary of Terms 

 

Glossary Explanation 
KVM KVM (Kernel-based Virtual Machine) is a full virtualization technique in kernel space 

that enable the host directly manage guest kernel [1]. 
Userspace Userspace is the memory area where application and drivers execute [2]. 

Kernelspace Kernel space runs a privileged system kernel, kernel extensions, and most device 
drivers [2]. 

Ptrace ptrace is a system where a process can control another process [3]. 
Hypervisor A hypervisor or virtual machine monitor (VMM) is computer software, firmware or 

hardware that creates and runs virtual machines [1]. In UniServer project, we focus 
on both userspace hypervisor (QEMU) and kernel space hypervisor (KVM). 

Host & Guest A computer on which a hypervisor runs one or more virtual machines is called a host 
machine, and each virtual machine is called a guest machine. 

Syscall A system call is the kernel level function where system respond the request of 
different kernel. 

Checkpoint In UniServer project, a checkpoint indicates snapshot which is the state of a system 
at a particular point in time. Also during each checkpoint, the system will compare 
and record the data to mirror memory. 

Reliable System A reliable system is defined as the system with error rates lowering the provided 
standard. 

Memory Backend The memory-backend device contains the actual host memory that backs guest RAM. 
This can either be anonymous mmapped memory or file-backed mmapped memory. 

HugeTLB A Translation Lookaside Buffer (TLB) that tolerates large page. Users can use the 
huge page support in Linux kernel by either using the mmap syscall. 

Hook Function Code that handles intercepted function calls, events or messages is called a hook. 
Page Fault Handler A page fault is a type of exception raised by computer hardware when a running 

program accesses a memory page that is not currently mapped by the memory 
management unit (MMU) into the virtual address space of a process [2]. A handler 
that raises page fault is called page fault handler. 

Page Allocator The page allocator includes various syscalls from Linux memory modules, such as, 
mmap, alloc_page, etc. 

Hot-Plug It describes the addition of components that would expand the system without 
significant interruption to the operation of the system [4]. 
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Executive Summary 

This deliverable describes the developed schemes that aim at enhancing the error-resiliency of the hypervisor 
layer that essentially enables the use of virtual machines in the UniServer platform as we discussed in the 
deliverable D5.1. Our work, initially aims at characterizing the sensitivity of the hypervisor structures against 
errors to better understand which of them critically affect the system operation. In particular, based on our 
initial characterization campaign we identify data structures that, in case of a hardware error, cause system 
crashes with an increased probability which we may choose to protect by executing on reliable cores and 
storing them on reliable memory zones.  Essentially, the initial error-resilient scheme implemented at the 
hypervisor layer lies on the adoption of a heterogeneous reliability architecture, which is composed by a set of 
cores and memory zones that are operating at conservative but reliable operating points and a set of cores 
and memory zones that operate at the extended operating points. Hypervisor data structures that are found to 
be critical for the system operation are forced to be executed on the reliable cores and memory zones, whereas 
less critical structures and application tasks/data are allowed to be executed on the unreliable cores/memory. 
In the implemented scheme we try to choose what to execute on the reliable cores/memory to minimize the 
system crashes, while also getting advantage of the allowed operation at extended margins in the unreliable 
domain and the resultant energy savings. 

In the final section, we discuss possible future enhancements including the implementation of a mirrored 
memory and the implementation of a checkpoint and restart mechanism for sensitive data structures that could 
further shield system software against the effects of potential hardware errors.  
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1. Introduction  

The UniServer project focuses on the design and development of a system capable of operating at extended 
hardware margins. This will be useful for a wide range of use cases, ranging from standalone deployments 
and fog computing to big cloud deployments in data centers. To support such diverse scenarios, the platform 
must be equipped with a complete software stack able to efficiently manage the available compute / storage 
resources and facilitate installation, migration and replication of applications, both at the node and cloud-level. 
Each component of the software stack is built on top of state-of-the-art software packages ported onto the 64-
bit ARM (Aarch64 or arm64) architecture of the targeted micro-server hardware. 

In particular, we adopt the KVM [1] (kernelspace) and QEMU [5] (userspace) hypervisors to provide the 
virtualization layer to the ecosystem with a handful of benefits such as easy installation, replication and 
migration of applications.  

In this deliverable, we describe our initial approach on enhancing the error-resiliency of the hypervisor which 
can be formulated into the following main steps that reflect also the organization of the document:  

- Characterize the sensitivity of the hypervisor data structures under hardware errors 
- Implement a heterogeneous reliability architecture consisting of reliable and unreliable cores and 

memory zones 
- Make the necessary changes to system software to guide the execution of the data structures base 

on their sensitivity on cores/memory zones with the appropriate reliability which is essentially being 
controlled by the adopted operating points    

1.1.  Hypervisor Data Structure Characterization 

Introducing more reliability into a system, at any level, invariably reduces performance. This means that a 
practical design has to strike a balance between these two attributes in the design. We conducted a set of 
experiments in which we performed static data characterization of both the KVM and QEMU hypervisors, in 
order to find an appropriate balance for the UniServer system.  Our experiments considered the reliability of 
both memory and processors, determined which software components can safely remain in the relaxed side 
of the system and how dynamic adaptation of the system configuration can help us limit performance 
degradation to a minimum. We also need to understand per resource limiting factors, such as the delay time 
between a transition from nominal configuration to extended margins and vice-versa and the verification 
process of a completed transition. This kind of information is very important to the design decisions and the 
overall approach of the UniServer project. For example, it can be used as an input to the predictor module and 
the checkpoint mechanism. 

1.2.  Hypervisor Design and Implementation 

We address and discuss the fault-tolerance and efficiency of the hypervisor in two separated but closely related 
threads, one from the memory / storage and one from the execution point of view. This separation facilitates 
the design, development and exploration space of the ongoing work, as well as the organization of this 
document. All methods and features we present in these two threads are orthogonal yet complementary and 
compatible. 

Linux kernel divides physical memory into a number of different memory regions, which are called zones. 
Some zones (high mem zones) are reserved for large memory usage. We exploit this and introduce the 
concept of heterogeneous reliability memory which is being controlled by the selected operating points.   
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A heterogeneous reliability memory contains fully reliable and less reliable domains. A fully reliable domain is 
the domain mapped to reliable DIMMs operated at the nominal refresh rate and voltage level.  On the other 
hand, a less reliable domain is created where unreliable DIMMs operate marginal refresh rate and voltage 
level.  To support it, we firstly create the unreliable zone in the Linux memory layout and add flags 
ZONE_UNREL, GFP_UNREL to direct this zone. We then revise the corresponding syscall interfaces such as 
mmap, kmalloc, alloc_page to support unreliable flags. To implement the error resilient hypervisor for 
heterogeneous reliability memory, we revise the memory allocation hypercalls inside of QEMU hypervisor. For 
example, we can use the QEMU to boot a backend memory (guest physical RAM) for KVM.   

Regarding the error resiliency of the execution units (CPUs/cores), we have developed functionality migration 
techniques that redirect a subset of the system functionality to reliable CPUs only. Namely we migrate 
interrupts, system calls/hypercalls and the page fault handler. In these cases, the SMP assumptions of the 
system do not hold anymore. As an abstract picture, one can assume that relaxed CPUs/cores request from 
the reliable ones to perform these specific tasks on behalf of them. We also provide the baseline changes in 
order to migrate the scheduler decisions away from the relaxed CPUs. There are more places in the hypervisor 
where functionality migration may prove beneficial for the overall error resilience of the system. As a technique, 
functionality migration is orthogonal to the mirroring and checkpoint solutions for memory and both can be 
combined in order to fully protect the hypervisor. 

1.3.  Organization  

The rest of the document is organized as follows. Section 2 discusses the data characterization and analysis 
performed on both KVM and QEMU components of the hypervisor. This analysis reveals the most sensitive 
data and code of the hypervisor. In Section 3, we present the design and implementation of the error resilient 
memory of the hypervisor. Section 4 presents the design of the error resilient execution of the hypervisor and 
the mechanisms to enable / disable the introduced features. Section 5 discusses related work. Section 6 
concludes the document presenting conclusions for our work and looking at future directions in which we can 
develop our research. 
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2. Hypervisor Structure Characterization 

In this section, we discuss the characterization framework, and experimental results in terms of the structures 
/ code sensitivity as well as in terms of the time to failure. 

2.1.  Kernelspace 

The faults that hypervisor must tolerate, may originate from the two main resources of the system operating 
outside nominal margins: memory and processor. We consider two potential protection approaches: The first 
assumes full hypervisor protection and is less intrusive to the existing monolithic hypervisor architecture of 
Linux-KVM. The second, more challenging, approach opts for selective hypervisor protection. Selective 
protection requires deep insight on the fault sensitivity of the hypervisor's data structures and operations. At 
the same time though, selective protection has the potential to introduce less overhead.  

In order to choose the appropriate and most realistic type of memory protection for the hypervisor, we 
performed a set of experiments to quantify the memory footprint of the hypervisor under different kinds of 
workloads. For these experiments, we used the applications contributed by the application partners in the 
UniServer project (Sparsity, WorldSensing, Meritorius). 

The emulation environment as depicted in Figure 1, includes a nested (two-level) virtualization setup. The first 
(closer to the real hardware) level enables us to control and monitor the system from the hardware perspective, 
where the second (higher) level is the hypervisor under characterization and runs the workload that replicates 
a real-project scenario. Our emulation setup can run on the x86_64 architecture as well, leveraging our existing 
hardware infrastructure thus enabling development / testing before the actual ARM-based machine and arm64 
versions of the applications were available.  

 

 

 

 

 

 

 

 

 

 

 

We quantitatively evaluated the memory overhead of hypervisor data structures with respect to the memory 
occupied by the virtual machines (VMs) and applications running on top of them. We have measured the KVM 
hypervisor memory footprint by repeatedly executing four instances of VMs, each of which accommodates a 
benchmark (Sparsity LDBC benchmark -Figure 2, Meritorius - Figure 3, WorldSensing - Figure 4 and a mixture 
of the three - Figure 5). These figures show the hypervisor size in MB over time. The benchmarks stress the 

Figure 1: Emulation Environment Setup 
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CPU, disk I/O and network. As shown in the figures below, the KVM footprint (red line) is always less than 7% 
compared to the total utilized memory of the system. This indicates that placing the whole kernel part of the 
hypervisor in a reliable memory domain is a realistic and probably optimal approach. The lower part of the two 
figures depicts a breakdown of the memory footprint of the internal data structures of the hypervisor. Disk and 
disk cache-related data structures (such as buffer-head) typically dominate the KVM footprint.  
 

 
Figure 2: Footprint of Hypervisor and Slab Objects for 

LDBC Graph Analytics Benchmark 

 
Figure 3: Footprint of Hypervisor and Slab Objects for 

Meritorius Benchmark 

 
Figure 4: Footprint of Hypervisor and Slab Objects for 

World Sensing Benchmark 

 
Figure 5: Footprint of Hypervisor and Slab Objects for 

Mixture of Benchmarks 
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Figure 6: Workflow of Fault Injection Experiments 

 

Figure 7: Left - WorldSensing SDCs before the VM, Right - WorldSensing SDCs before the Application 

The KVM can be affected by CPU faults as well, which are not avoided by allocating reliable memory for KVM 
data structures. To characterize the sensitivity and significance of hypervisor kernel data structures and code, 
we have applied fault injection using our emulation environment. Specifically, for each statically allocated 
object of the hypervisor (total 13621 objects - Linux Kernel v4.3.0), we introduced, silent data corruptions 
(SDCs) in 5 independent executions (in Figure 6). For each execution, we checked whether the data corruption 
resulted to a non-responsive hypervisor, and marked this object accordingly as crucial or not, for the hypervisor 
state. In addition, we experimented with the SDC injection-time implementing two scenarios: either injecting 
SDCs just before initiating the application workload, or right before starting the VM.  
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Figure 8: Left - Meritorius SDCs before the VM, Right - Meritorius SDCs before the Application 

As an example, Figure 7 and Figure 8 depict the number of failures sorted according to the functionality of the 
static data structure affected by the SDC for the Meritorius and WorldSensing application respectively. We 
observe that the same fault injection rate leads to an order of magnitude more hypervisor crashes when 
injecting SDCs just before the initiation of the VM, compared with injecting SDCs after VM startup but right 
before application execution. At the same time, there is a clustering in the criticality and sensitivity of 
data structures and kernel code, according to their functionality. For example, data structures responsible for 
the fs, kernel and net subsystems are sensitive and should be protected. Interestingly, the sensitive data 
structures appear to be the same in both scenarios. On the other hand, they may differ in an intuitive manner 
under different types of workloads (for example, the WorldSensing application indeed stresses the network 
and filesystem, therefore increased sensitivity in those hypervisor modules should be expected). 

Another metric we quantified through our experiments is the time between a fault injection and the moment an 
error potentially manifests and eventually leading to an unresponsive hypervisor. This information is necessary 
if a checkpoint-restore protection mechanism is chosen, as it provides an insight on the required frequency of 
checkpointing. In our experiments, we were particularly interested in latent error manifestation.  

Figure 9 and Figure 10 show that the majority of errors manifested practically instantly (~97% of total 
manifested errors) but there are also some cases that errors manifest as late as 510 seconds after fault 
injection. This introduces a challenge for traditional checkpoint-restore protection mechanisms: in this time 
frame every computation may be untrustworthy and the safe state that the hypervisor may have to restore 
could be 510 or more seconds in the past, resulting to a significant amount of energy / performance loss. 
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Figure 9: Latency of Error Manifestation for Meritorius Application Workload 

 

Figure 10: Latency of Error Manifestation for WorldSensing Application Workload 

2.2.  Userspace 

In userspace data characterization, we focus on errors injected in the QEMU and trace its performance. The 
error is generated by ptrace to the QEMU process.  
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Figure 11: Userspace Error Injection Setup 

Figure 11 depicts the architecture of the userspace error injection scheme. We use objdump to print all QEMU 
code value (offset) to a disassemble file. We use the ptrace interface which can observe and control the 
execution of any process at the user level, and examine and change its memory and registers. We setup two 
flags of ptrace to inject errors to QEMU modules: PTRACE_PEEKDATA to read data from the target address 
and PTRACE_POKEDATA to inject an error by changing data stored at a certain address.  

We mainly targeted the ARM architecture and XGene2 but we used also the Intel architecture. The Libvirt [6] 
is used as the monitor APIs. We executed three typical Cloud benchmarks on the VMs: Parsec [7], Memcached 
[8], Specjbb [9]. We inject all errors when running the benchmarks and we trace only QEMU crashes. In our 
experiments, we discovered that some kinds of errors trigger QEMU crash and thus we record all such errors. 
We choose 80 typical modules which affect 3,000 QEMU functions. In this report, we list most sensitive 
modules and functions. For each trace, we run our simulation 50 times (1 minute per time).  

Figure 12 shows the failures of modules in case the Parsec benchmark is used as a workload on top of QEMU. 
In this experiment, we found that the memory section has many sensitive modules. For example, the page 
module incurs 60 system failures, while the memory module incurs 16 failures.  

  

Figure 12: Failures of QEMU Modules in Parsec Benchmark 
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We discovered that the QEMU [5] instruction translate module, which includes tcg and tb, is the most sensitive 
module.  We explain this by that fact that most userspace instructions of a guest VM is translated in this module 
and thus it is likely that any data corruption in the module will result in a hypervisor crash. 

We also notice that the memory related modules (mem, page) induce a higher number of failures in comparison 
with other modules, such as pci and io modules (Figure 13).  
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Figure 13: Hypervisor Function Failures in Parsec Benchmark 
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Figure 14: Failures of QEMU Modules in Memcached Benchmark 

Figure 14 shows distribution of failures between QEMU modules for the Memcached benchmark run. In this 
experiment, we use CloudSuite [8] to emulate Memcached client and server. Memory modules such as mem, 
page, they incur higher failures than that in Parsec benchmark. On the other hand, tcg and tb modules are the 
sensitive in Figure 16. 

 

Figure 15: Failures of QEMU Modules in Specjbb Benchmark 
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Figure 16: Hyervisor Function Failures in Memcached Benchmark 
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Figure 15 and Figure 17 show the distribution of failures between different functions when running the Specjbb 
benchmark. For experiments with this benchmark, we create 2 JVMs inside the guest virtual machine and 
setup the warehouse threshold as 1 minute.  

We found that rcu failures are higher than the previous two benchmarks. That means Specjbb JVM needs 
more read-copy update [2] for communication.  
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Figure 17: Hypervisor Function Failures in Specjbb Benchmark 
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Through the testing of the three benchmarks, we can conclude some analysis as follows: 

 The hypervisor crashes when errors are injected in tcg and tb modules regardless of the running 
benchmark.  

 The behavior of hypervisor varies between different benchmarks if an error is injected in other modules, 
such as mem and page: for some benchmarks, we can observe hypervisor crashes, while other 
benchmarks do not trigger any crashes. 

 Modules of the QEMU hypervisor could be selectively protected.  
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3. Error Resilient Hypervisor Implementation – Storage   

As we discussed in the previous section, some data structures may be more sensitive to errors and may cause 
system crashes more easily than others. A failure in a critical data structure can cause a complete system 
crash. For example, in Section 2, we already provide a sensitivity characterization of hypervisor structures. 
When we inject errors to sensitive structures, QEMU and KVM are significantly more prone to crashes. This 
section focuses on the implementation of a heterogeneous reliability memory scheme that is composed of a 
fully reliable and a less-reliable memory domain. In addition, we discuss the modifications at the system 
software that enable memory domains with different reliability and storage of critical structures on the reliable 
domain and the less critical data on the less reliable domain 

Our current implementation, based on the APM Linux kernel, is a software-based approach that implements a 
heterogeneous memory architecture by adopting independent memory zones with different reliability.  When 
the QEMU or the KVM requests memory with high reliability, the syscall mmap or alloc_page will allocate the 
space and map it to a reliable domain. Through this, we can selectively protect the sensitive data structures of 
the hypervisor. In this section, firstly, we introduce the concept of the heterogeneous reliability memory 
domains, and then we provide implementation details about the memory allocation syscalls. Finally, we enable 
QEMU to support the heterogeneous memory zones. 

3.1.  Heterogeneous Reliability Memory 

We introduced a new zone, ZONE_UNREL, and modified the zone initialization procedure to split all PFNs 
(Page Frame Number) into two groups [10]. The first group, called reliable domain is used for ZONE_NORMAL 
and ZONE_DMA and the second group called less reliable domain is used for ZONE_UNREL. We note that 
the first group contains PFNs which correspond to reliable DIMMs operated at the nominal voltage and refresh 
rate levels, while PFNs belonging to the second group address unreliable DIMMs operated at the marginal 
refresh rate and voltage level. Memory from the unreliable zone is allocated through mmap system call which 
uses memory from ZONE_UNREL if the user has set a specific flag. Thus, we can operate memory segments 
at the marginal refresh rate and voltage levels to reduce power consumption without significant modifications 
of Linux and other system software, since these segments are not available for allocation until it is explicitly 
requested. 
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Figure 18: Heterogeneous Reliability Memory 

Figure 18 shows the workflow of memory allocation for both reliable and less reliable domains. In this figure, 
the reliable domain includes normal zone and DMA zone, while the less reliable domain is created for unreliable 
DIMMs. We use the following steps to revise the UniServer kernel (APM kernel) for heterogeneous reliability 
memory:  

 Step 1 Layout and flags: We create the less reliable domain in the kernel and support to enable it 
with a flag. 

 Step 2 Backend map extension: We initialize the value of these flags and also enable syscall mmap 
to create map from userspace to unreliable zone.  

 Step 3 Page allocator extension: We revise the syscall alloc_page and define new flags for unreliable 
zone. 

 Step 4 Hypervisor for heterogeneous reliability memory: We revise QEMU related hypervisor using 
memory-backend approach, so that when QEMU creates memory area it can access unreliable 
domain. 

In Section 2, we provided the results of characterization showing how hypervisor structures are sensitive to 
errors. As we can identify virtual addresses of all sensitive structures, we are able to map such structures to 
the reliable memory domain. Such mapping is one way to enable fault-resiliency in the hypervisor which is the 
main target of our research. 
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3.2.  Layout and Flags  

Figure 19 shows the definition of heterogeneous reliability memory. First, the function zone_sizes_init creates 
the memory layout supporting extended memory domain (see its source code in Figure 20). Typically, the 
lowest region is the DMA zone, while the remaining is the normal zone and we separate a part of normal zone 
to the less reliable zone. In this figure, all the zones directly communicate with MCBs. For example, DMA zone 
and normal zone direct the hardware memory layout to the first Memory Controller Block (MCB0), while 
unreliable zone direct the layout to MCB1 which is regarded as less reliable domain. 

 

Figure 19: Definition of Heterogeneous Reliability Memory 

Then during the boot time, physical memory is initialized following the configuration of zone size. Finally, 
start_zone_unrel () (in Figure 20) will return the address of unreliable zone. 

 

Figure 20: Memory Region of Heterogeneous Reliability Memory 

/** In the UniServer kernel arch/arm64/mm/init.c function is zone_sizes_init **/  

       min_unrel = PFN_DOWN(start_zone_unrel()); 

        if (min_unrel < max_dma) 

                min_unrel = max_dma; 

        zone_size[ZONE_NORMAL] = min_unrel ‐ max_dma; 

        pr_warn("Normal: %lu ‐ %lu (size: %luGB)\n", max_dma, min_unrel, 

                zone_size[ZONE_NORMAL] >> (30 ‐ PAGE_SHIFT)); 

        zone_size[ZONE_UNREL] = max ‐ min_unrel; 

        zone_size[ZONE_NORMAL] = max ‐ max_dma; 

        pr_warn("Normal: %lu ‐ %lu (size: %luGB)\n", max_dma, max, 

                zone_size[ZONE_NORMAL] >> (30 ‐ PAGE_SHIFT)); 
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To expose the different domains of our scheme to the user, we have implemented an API for requesting 
memory from the less reliable domain. Figure 21, shows the additions in include/Linux/gfp.h, defining the 
necessary flags.  

 

Figure 21: Basic Kernel Flags for Heterogeneous Reliability Memory 

We modify zone_type gfp_zone() to force the bit check, because adding ZONE_UNREL overflows 
GFP_ZONE_TABLE. The detailed workflow of the implemented scheme can be seen in Figure 22. 
GFP_UNREL is set to support kernel level allocator such as kmalloc.  

 

Figure 22: Syscall Implementation for Heterogeneous Reliability Memory 

/** In UniServer Kernel include/Linux/gfp.h, we define kernel flags to support unreliable    

zone **/ 

#define ___GFP_UNREL    0x10u 

#define __GFP_UNREL  ((__force gfp_t)___GFP_UNREL)  /* Page comes from less reliable 

domain */ 

#define GFP_ZONEMASK  (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE|__GFP_UNREL) 

#define GFP_UNREL  __GFP_UNREL 

+#ifdef CONFIG_ZONE_UNREL 

#define OPT_ZONE_UNREL ZONE_UNREL 

#else 

#define OPT_ZONE_UNREL ZONE_NORMAL 

#endif 

static inline enum zone_type gfp_zone(gfp_t flags) 

{ 

if (bit & __GFP_UNREL)    return ZONE_UNREL; 

} 
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3.3.  Backend Map Extension 

Figure 23 shows implementation of mmap being used for QEMU to map the guest RAM to the host file both in 
private map and anonymous map. We also try to use the less reliable domain in mmap function thus we define 
the threshold in our architecture (Aarch64). However, this value could be changed for other machines. In 
UniServer, the mmap syscall can be used to directly map virtual space to the heterogeneous memory.  

 

Figure 23: Implementation for mmap() 

3.4.  Page Allocator Extension 

Syscall alloc_page() facilitates frequent allocations and deallocations of data, programmers often introduce 
free lists. It can create the page level map when the new allocation is ready. Since it can be frequently called 
when kernel allocate memory to the application, we minor revise alloc_page function when QEMU workload 
requests the page level allocation. 

We have created the flag GFP_UNRELUSER as GFP_USER | GFP_UNREL, thus we can force alloc_page() 
to map pages to the less reliable domain, as shown by the changes in the code of the implementation of 
alloc_page() in Figure 24. 

/** In the function include/Linux/mm.h, we define the access threshold address **/ 

#if defined(CONFIG_ZONE_UNREL) 

#define VM_UNREL  value  /* Define the threshold of unreliable domain */ 

#endif 

 

/**** In the function mm/memory.c, we add the support for mmap syscall ****/ 

#ifdef CONFIG_ZONE_UNREL 

        if (flags & MAP_UNREL) { 

                pr_info("%s: Setting up VM_UNREL flag\n", __func__); 

                vm_flags |= VM_UNREL; 

        } 

 

#endif 

 

/** In include/uapi/asm‐generic/mman‐common.h, we add flag for mmap so that it can map to 

unreliable domain **/ 

 

#ifdef CONFIG_ZONE_UNREL 

#define MAP_UNREL  0x40    /* Mem from ZONE_UNREL can be used */ 

endif 
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Figure 24: Implementation for alloc_page() 

3.5.  Hypervisor Using Heterogeneous Reliability Memory 

To support heterogeneous reliability memory, we revise the QEMU hypervisor. Our revision rationale is: when 
QEMU tries to allocate memory for a KVM, we can choose on-the-fly the mapping to which reliability zone it 
will end up using. If we identify all the hypercalls from QEMU hypervisor to Kernel syscall mmap and trap them, 
we can modify those hypercalls and further control the map to heterogeneous reliability memory. In the 
following section, we will detail the QEMU allocation mechanism and how to revise the allocation hypercall for 
our purpose.  

For the QEMU and KVM, each memory region is a range of host memory that is available to the guest. 
Accesses into the region do map directly to host memory. In general, KVM memory could be created through 
two approaches: 1) QEMU Malloc, or 2) Memory backend. This subsection will describe the approaches. 

/** mm/page_alloc.c **/ 

struct page *__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 

                        struct zonelist *zonelist, nodemask_t *nodemask) 

{ 

#ifdef CONFIG_ZONE_UNREL 

        if (ac.high_zoneidx == ZONE_UNREL) { 

                alloc_flags |= ALLOC_NO_WATERMARKS; 

                alloc_flags &= !ALLOC_FAIR; 

        } 

#endif 

} 

 

static char * const zone_names[MAX_NR_ZONES] = { 

#ifdef CONFIG_ZONE_UNREL 

         "Rel", 

#endif 

 

/** include/Linux/gfp.h **/ 

 

#define GFP_UNRELUSER (GFP_USER | __GFP_UNREL) 

 

/** mm/memory.c **/ 

+#ifdef CONFIG_ZONE_UNREL 

  if (vma‐>vm_flags & VM_UNREL) { 

    pr_debug("%s: Trying to allocate page from ZONE_UNREL\n",      

__func__); 

    page = alloc_page(GFP_UNRELUSER); 

  } else 

    page = alloc_zeroed_user_highpage_movable(vma, address); 

#else 
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 QEMU Malloc: QEMU process runs mostly like a normal Linux program. It allocates its memory with 
normal malloc() or mmap() calls. It will not be actually allocated until the first time it is touched. Once 
the guest is running, the KVM provides a part of the malloc()'d memory area as being the physical 
memory of the guest.  

 Memory Backend: Memory-backend device (backends/hostmem.c) contains the actual host memory 
that backs guest RAM [11]. It includes anonymous mmap and file-backed mmap. An anonymous 
mmap is used if the memory space could be shared with many applications, while file-backed mmap 
is used when a file area is regarded as guest physical memory.  

 

 

Figure 25: Architecture of Error-Resilient Hypervisor 

We revise the QEMU APIs to support the reliability domains. As an overview, Figure 25 details the architecture 
of error resilient hypervisor of our current implementation. If QEMU creates memory area using memory 
backend, guest RAM is initialized by memory_region_init_ram() [12]. We can also use hypercalls, such as 
memory_region_init_resizeable_ram(), memory_region_init_ram_ptr(), or memory_region_init_from_file() to 
create memory for special use-cases. Memory from both frontend and backend are finally mapped through 
qemu_ram_alloc() (exec.c). 

 

Figure 26: Flag Setup of QEMU Hypervisor 

/** Define the unreliable map in QEMU hypervisor to support mmap syscall **/ 

 

#ifndef MAP_UNRELIABLE 

#define MAP_UNRELIABLE MAP_UNREL // define MAP_UNRELIABLE in the QEMU  
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The two APIs will call qemu_ram_mmap() (util/mmap-alloc.c) to create mapping to host memory region. We 
revise this hypercall to support MAP_UNREL flag in the host server. To revise the QEMU for less reliable 
domain, we define the flags in Figure 26 (include/qemu/osdep.h).  

 

Figure 27: Implementation of mmap Entry for Heterogeneous Reliability Memory (MAP_UNRELIABLE) 

Figure 27 shows the mmap entry implemented in QEMU. In the flag we add the MAP_UNREL when mmap() 
function checks RAM zone using either anonymous flag or no reserve flag. Thus, when QEMU initializes guest 
RAM, the entry (start address) of RAM region will be mapped to the less reliable domain. 

 

Figure 28: Implementation of mmap to Normal Position for Heterogeneous Reliability Memory 
(MAP_UNRELIABLE) 

Figure 28 shows the normal position mmap in our implementation. The normal position does not begin with ptr 
entrance. At the beginning, we use QEMU_ALIGN_UP() to do the page align for the offset. ptr is the entry 
mapped to the host less reliable domain. In this function, we map the target position of the guest RAM to the 
host less reliable domain when QEMU decides whether the flag is MAP_SHARED or MAP_PRIVATE. After 
that, we revise the callers of qemu_ram_mmap(): flie_ram_alloc() and qemu_anno_ram_alloc() (Figure 29). 

/** Add the support of map unreliable in QEMU hypervisor (util/mmap‐alloc.c) **/ 

#if defined(__powerpc64__) && defined(__Linux__) 

       int anonfd = fd == ‐1 || qemu_fd_getpagesize(fd) == getpagesize() ? ‐1 :  fd; 

       int flags = anonfd == ‐1 ? MAP_ANONYMOUS : MAP_NORESERVE; 

       void *ptr = mmap(0, total, PROT_NONE, flags | MAP_PRIVATE | MAP_UNRELIABLE, anonfd, 

0); 

#else 

void *ptr = mmap(0, total, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE |  

MAP_UNRELIABLE, ‐1, 0); 

  /** Add the support of map unreliable in QEMU hypervisor (util/mmap‐alloc.c) **/ 

    size_t offset = QEMU_ALIGN_UP((uintptr_t) ptr, align) ‐ (uintptr_t)ptr; 

    void *ptr1; 

    ptr1 = mmap(ptr + offset, size, PROT_READ | PROT_WRITE, 

                MAP_FIXED | MAP_UNRELIABLE | 

                (fd == ‐1 ? MAP_ANONYMOUS : 0) | 

                (shared ? MAP_SHARED : MAP_PRIVATE), 

                fd, 0); 

    if (ptr1 == MAP_FAILED) { 

        munmap(ptr, total); 

       return MAP_FAILED; 

    } 

    ptr += offset; 

    total ‐= offset; 
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Figure 29: Support for Less Reliable Domain in Caller of qemu_ram_mmap() 

Through those modifications, we create memory allocations in QEMU following the example in Figure 30. The 
flag “–m 1G” enables 1 GB of main memory for the QEMU based on the malloc approach in the reliable zone. 
Furthermore, the two following flags: “-object memory-backend-file”, enables the QEMU to use memory from 
the less reliable domain and “-device pc-dimm”, maps the allocated memory to correspond as a DIMM in the 
QEMU virtual machine. Through this simple example, users can utilize the heterogeneous reliability memory 
for different use-cases.  

  

Figure 30: QEMU Commands of Backend Mode to Create KVM  

In my previous idea, we hope to put the whole QEMU (userspace hypervisor) and VM memory space into the 
reliable domain. However, if we put all the VM and hypervisor to the reliable domain on the fly, it is not a 
space-efficient approach because we should backup the whole data. We will discuss the solution in the 
future work (Section 6). 

  

#ifdef RELIABLE_MAP 

    area = qemu_ram_mmap(fd, memory, block‐>mr‐>align, 

                         block‐>flags & RAM_SHARED); 

    if (area == MAP_FAILED) { 

        error_setg_errno(errp, errno, 

                         "unable to map backing store for guest RAM"); 

        goto error;  

   } 

#endif 

     

 

void *qemu_anon_ram_alloc(size_t size, uint64_t *alignment) 

{ 

  size_t align = QEMU_VMALLOC_ALIGN; 

#ifdef RELIABLE_MAP 

  void *ptr = qemu_ram_mmap(‐1, size, align, false); 

  if (ptr == MAP_FAILED) { 

        return NULL; 

  } 

    if (alignment) { 
        *alignment = align; 

    } 
  trace_qemu_anon_ram_alloc(size, ptr); 

  return ptr; 

#endif 

/** Memory backend creation for less heterogeneous reliability memory, we can create the 

normal dimm for reliable memory, and we choose the command memory‐backend‐file for the less 

reliable memory **/ 

 

qemu [...] \ 

   ‐m 1G,slots=2,maxmem=2G \ 

   ‐object memory‐backend‐file,id=mem1,size=1G,mem‐path=/dev/mem_unrel_1 \ 

   ‐device pc‐dimm,id=dimm1,memdev=mem1 
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4. Error Resilient Hypervisor – Execution 

The primary objective of system software is to self-protect against failures and on top of that to provide 
transparent protection to the applications whenever possible. The hypervisor should minimize the critical 
system code that executes on relaxed cores whenever possible. As a rule of thumb, we initially consider all 
code that runs in kernel-mode and manages the KVM state as critical and user-mode code i.e. applications to 
be non-critical. 

Virtualization support is closely integrated in the Linux kernel. The KVM subsystem of Linux is responsible for 
the management of virtualized hardware, especially virtual CPUs. A virtual CPU is a data structure that holds 
the CPU state of the hardware CPU when running a virtual machine on it. This resembles a lot the purpose of 
the task_struct data structure of Linux that maintains the state of each thread on the system. Linux takes 
advantage of this similarity and manages each virtual CPU as a separate process with all the benefits of the 
latter, such as scheduling, migration, pinning, grouping etc. Under this abstraction, virtual CPUs and by 
extension virtual machines are just user applications, therefore consist of non-critical code according to our 
definition above. 

A failure in a critical code path can cause a complete system crash. On the other hand, a failure in a non-
critical code path is usually constrained to just one or a few related applications with rather limited propagation 
probability to other parts of the system. This section focuses on mechanisms that can relieve the relaxed cores 
of the system from executing critical code and hand it over to one of the reliable cores in order to minimize the 
probability of catastrophic errors at the system level. The actual use and optimization of the mechanisms is left 
to the policy manager for better flexibility. 

This reliable / relaxed scheme breaks the Symmetric multiprocessing (SMP) assumptions of the traditional 
Linux kernel, where all processors are treated as equal. Our approach essentially downgrades the relaxed 
CPUs to thin clients of the reliable ones, resulting in higher resilience. In this deliverable, we focus mostly on 
the functionality of the mechanisms and their contribution to an error resilient hypervisor, keeping any 
optimizations as an improvement for Deliverable D5.4.  

Whenever possible our design and implementation opts to use / extend existing features of Linux / KVM kernel, 
rather introducing new ones. The main points of interest are the entry points from non-critical to critical code, 
namely the system calls, interrupts and page faults. Considering virtualization support, hypercalls are another 
common entry point from guest-mode (non-critical) to host-mode (critical). The hypercall mechanism is used 
by the guest operating system to request attention from the hypervisor. According to 
Documentation/virtual/kvm/hypercalls.txt of the Linux documentation, KVM does not provide any hypercalls for 
the Aarch64 architecture. Nevertheless, critical parts of hypercalls can be protected – on any architecture – in 
the same way as system calls. Another subsystem of the hypervisor that is frequently executed and prone to 
crash the system in case of failure is the scheduler. The next chapters discuss the existing infrastructure, the 
architecture of our approach and provides technical insight for each one of the aforementioned points of 
interest.  

4.1.  Interrupt Handlers 

Hardware interrupt handlers reside in the lowest-level of the system software stack and play a significant role 
for the stability and performance of the system. They are responsible for CPU inter-communication and for the 
communication of a CPU with the rest of the peripheral devices. They can be triggered to execute at almost 
any point and disrupt the normal execution flow of applications, or even parts of kernel code, to serve a pending 
request that needs immediate attention. 

The hardware device responsible for handling and delivering interrupts to CPUs is called interrupt controller. 
When a CPU is operating at extended margins, thus more likely to suffer errors, it is better for the operating 
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system to exclude it from running any interrupt handlers. The interrupt controller in most systems is a 
programmable component that can selectively deliver incoming interrupts to specific CPUs. Under our error 
resilient hypervisor, these would be the reliable CPUs whereas the relaxed ones should never receive any 
interrupts. However, this interrupt rerouting is not possible for all types of interrupts, either due to architectural 
reasons or to ensure correct system behavior. Non-routable interrupts are timer interrupts that drive the 
scheduler tick, perf events and time-related per CPU statistics such as system load. 

We reroute all routable interrupts using the irq_set_affinity(irq, mask) function, which changes the CPU mask 
for the specified interrupt number to a CPU mask that contains only reliable CPUs. Figure 31 outlines the code 
that performs this change.  

 

Figure 31: Pin Interrupts to Reliable CPUs 

On a very active system with high load that generates many interrupts, this may create a bottleneck on the 
reliable CPUs. In such a case, a policy manager may decide to increase the number of reliable CPUs by 
restoring a relaxed one to its nominal configuration. Alternatively, it may select to exclude some interrupts / 
cores from re-routing, according to the criticality of individual types of interrupts and the relative error resilience 
of cores.  

4.2.  System Calls 

The system call mechanism is the most common path used by applications to request services from the 
operating system. It is very similar to the user-level function call mechanism, but with an important difference: 
it crosses the user-kernel boundary and executes privileged code. Most of the system calls take some user 
input and operate on critical system data structures in a controlled fashion. By nature, system calls are prone 
to propagating hardware errors isolated to one application to the whole system, as many system data 
structures invisible to user are shared among processes and could be touched by system calls.  

For an application that executes on a relaxed core, migrating each system call to reliable cores is a technique 
that minimizes the chances of introduction and propagation of such errors, although it does not completely 
eliminate it: there is a short "gray" time window when migration takes place, during which code is executed on 
the relaxed core. To the best of our knowledge, system call migration is a novel approach to system reliability 
and according to our experiments so far it is effective and worth of further evaluation and extension. 

Linux creates a separate wrapper for each system call through a series of macros in the system call’s definition. 
These wrappers just encapsulate the actual call and provide a consistent naming pattern with the prefix “sys_” 
for all system calls. Without delving into distracting implementation details, each time an application requests 
a service through a system call, the kernel performs the following pattern: 

1. Application - Request a service through a system call 
2. Kernel  - Switch from user- to kernel-mode, save user state 
3. Kernel  - Call the appropriate system call wrapper 
4. Kernel  - Switch from kernel- to user-mode, restore user state 
5. Application - Obtain result, continue execution 

The switch part and call of the wrapper (steps 2-4) are architecture-dependent and implemented directly in 
assembly. Working at this level requires concrete understanding of the target architecture and how the 

for_each_irq(irq) 

  if (irq_can_set_affinity(irq)) 

    irq_set_affinity(irq, reliable_cpu_mask); 
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hardware works. Nevertheless, it gives the programmer the flexibility to fully control the migration and shrink 
the time window between the transitions from relaxed to reliable core and vice-versa. 

On the other hand, the system call wrapper is architecture independent and written in C. This seems the ideal 
place to decide which core is going to execute the requested system call. To achieve the migration, inside the 
wrapper we manipulate the core affinity of the process right before and after the execution of the system call 
handler. Linux already provides a way to specify which cores a task is allowed to execute on through the 
sched_setaffinity() system call. Each core has its own migration thread pinned to it and stopped. The migration 
threads are special processes that migrate tasks between cores. When a core decides to move a task to 
another core, wakes up its migration thread to perform the actual work with high priority. After the migration is 
complete, the migration thread stops. 

The sched_setaffinity() function takes as parameter a CPU mask with the new allowed cores and ensures that 
the mask is valid for the current task. If the current task is currently attached on a core not included in the new 
CPU mask, it gets stopped if running. Then the cpus_allowed attribute of the task changes accordingly and 
the migration thread of this core takes over and moves the task to a suitable destination core. It is up to the 
scheduler to decide whether to rerun the task immediately or have it wait for its turn. If the current core of the 
task belongs to the new CPU mask, the aforementioned procedure is simplified. The running state of the task 
remains unchanged and the code merely adjusts the cpus_allowed attribute of the task. 

Having this functionality available, we have created two hook functions with a modified version of 
sched_setaffinity() that skip some sanity checks for the new CPU mask, since the input is not provided by the 
user but from the kernel itself and can be trusted. Next, we modify the system call wrapper to call these hooks. 
Our modified version is described in Figure 32. The listing below highlights just the system call wrapper, with 
our hook functions depicted in bold: 

1. System call enter hook 
2. Call the actual implementation 
3. Perform some sanity checks 
4. System call exit hook 
5. Return result 
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Figure 32: Modified System Call Diagram 

The first hook restricts the CPU affinity of the task to reliable CPUs only, where its counterpart at the end 
restores the previous CPU affinity, which may contain relaxed cores as well. We had to explicitly exclude the 
sched_setaffinity() system call from the migration process, as it is part of the implementation and trying to 
migrate it as well would result in an infinite loop. 

4.3.  Page Fault Handler 

The page fault handler is the most common asynchronous entry point to critical code. The page fault handler 
is responsible for detecting the cause of a missing translation of a virtual address, fetch any missing data to 
memory and update the necessary page tables of the interrupted process. After that, the process can continue 
its execution as expected. The page table structures of a process maintain the mapping from virtual to physical 
pages. Therefore, the page fault handler that modifies those structures can introduce security- apart from error 
resilience-issues. 

The function do_page_fault() is the main entry point of the page fault handler. After some initial checks, the 
most common code path calls the core function handle_mm_fault() which in turn calls __handle_mm_fault() to 
resolve the missing mapping and allow the application to continue. We restrict the execution of the latter 
function to reliable CPUs to avoid the corruption of page table entries. Figure 33 shows a simplified, pruned 
(mainly for visibility reasons) function graph of the page fault handler, indicating which part of the graph is 
being migrated. Apart from a few technical issues regarding the interrupt handling mechanism in general, we 
have chosen to protect this core function instead of the do_page_fault() entry point mainly because 
handle_mm_fault() is called from other points inside the kernel as well, and we want to cover them too. 
Additionally, focusing on handle_mm_fault() keeps the implementation architecture independent. 
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The migration mechanism for page fault handlers is different from the system call migration approach. We 
reuse the workqueue mechanism to offload the execution of __handle_mm_fault() from relaxed cores to a 
reliable one. Workqueues perform deferred execution of every committed work in their list and can be bound 
to one or more CPUs. The workqueue mechanism is supported by worker threads that undertake the actual 
execution of the queued work items. 

 

Figure 33: The Core Code of the Page Fault Handler 

The execution of the page fault handler on a relaxed CPU looks like this: 

1. Application - Page fault exception, pause execution 
2. Kernel  - Jump to entry point do_page_fault() 
3. Kernel  - Commit __handle_mm_fault() on a reliable CPU 
4. Kernel  - Wait for the committed work to complete. 
5. Kernel  - Exit the page fault handler 
6. Application - Resume execution 

4.4.  Scheduler 

The task scheduler of the OS is the component responsible for the fair distribution, execution and management 
of all tasks / processes present in the system. It is also responsible for load balancing between CPUs. When 
the scheduler detects an idle CPU, it tries to offload some tasks from a busy one. Each task is associated with 
one CPU at any time, regardless of the task's CPU affinity stored in the cpus_allowed attribute controlled by 
the sched_setaffinity() system call. 

Every CPU has its own runqueue of runnable tasks. The scheduler at specific intervals, or whenever triggered 
asynchronously, picks the next task to execute. Although the selection of the next task depends on the priority 
and policy class of each task (fair, deadline, realtime), the core scheduling algorithm is common for all policies. 
In order to provide an error resilient scheduler, we focus on this backbone code. 

The scheduler code is triggered either on each clock tick or programmatically. On each CPU, the timer interrupt 
handler calls the scheduler_tick() function. This function is responsible for updating the time statistics of the 
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runqueue and the currently running task. It also sets the task reschedule flag if necessary, flagging that the 
scheduler must be executed to pick a next task to run as soon as possible. The schedule() function on the 
other hand is called across the kernel whenever the current task of a CPU either has exceeded its time share 
or is waiting for a resource or is about to block due to I/O operations or to be terminated.  

Each CPU executes the scheduling algorithm for its own runqueue. The core implementation is in the 
__schedule() function. As the code of the scheduler manipulates critical data for the proper operation and 
behaviour of the system, the goal is to make the reliable CPUs execute the scheduler on behalf of the relaxed 
CPUs as well.  

The first step is to isolate the relaxed CPUs from the load balancing mechanism. This means that the only way 
to execute tasks on isolated CPUs is to explicitly set the task affinity to include them. We can achieve the 
aforementioned isolation with the provided isolcpus command line option available in Linux. The user provides, 
at boot time, the ranges or number of CPUs she wishes to exclude from the load balancing functionality. For 
example, on a system with eight CPUs the "isolcpus=2-7" parameter restricts the scheduler to automatically 
load-balance only among CPUs 0 and 1. The only downside at this point is that this information is fixed at boot 
time and cannot dynamically change at execution time. We aim to provide such a functionality in the future, if 
required by the project. 

In the current SMP design of Linux there are parts of the code that manipulate per-CPU data only, assuming 
none of the other CPUs changes them. Moreover, each CPU assumes that it takes its own decisions. 
Therefore, the second step is to make the scheduler code capable of running on one CPU and process data 
that belongs to another CPU, as well as to make the code aware of the distinction between reliable and relaxed 
CPUs. We changed the prototypes of critical functions to take the CPU number as an extra parameter and 
their implementations so that they can work with the correct per-CPU data. The extent of the changes is 
relatively limited. Figure 34 shows the functions and their call sites that have been refactored for the 
scheduler_tick() migration, whereas Figure 35 shows the high level flow chart of the reliable scheduler. 

 

Figure 34: Functions That Need Refactoring for the scheduler_tick() Migration 

void sched_clock_tick(void) {…} 

void scheduler_tick(void) {…} 

void set_cpu_sd_state_busy(void) {…} 
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Figure 35: Flow Chart of the Reliable Scheduler 

The scheduler_tick() on the relaxed CPUs skips the time statistics update of the task and runqueue. On the 
contrary, the reliable CPUs update their own time statistics plus the necessary time statistics for the relaxed 
CPUs. Figure 36 shows the code segment that runs the scheduler_tick() on the reliable CPUs on behalf of the 
relaxed CPUs. 

 

Figure 36: The scheduler_tick() Code Refactoring 

For the __schedule() function, the rationale and current approach is very similar to scheduler_tick(). The first 
reliable CPU selects the next task for each relaxed CPU and stores it in a new per-CPU variable next_task. 
The next time the relaxed CPU calls schedule(), it just reads its next_task and performs the context switch. 
Note that the actual context switch must stay on the individual CPU regardless of it being reliable or relaxed 
as each register file is visible only from the CPU it belongs. Figure 37 shows a simplified version of the code 
segment of __schedule() that implements the above logic. 

 

Figure 37: The __schedule() Code Refactoring 

if (is_reliable_cpu(cpu)) 

__schedule_tick(cpu);          /* update this CPU */ 

 

if (cpu == first_reliable_cpu())  

for_each_reliable_cpu(i) 

  __schedule_tick(i);     /* update each relaxed CPU */ 

if (cpu == first_reliable_cpu())  

for_each_reliable_cpu(i) 

  __schedule_cpu(i);  /* sets the next_task for each relaxed CPU*/ 

if (is_reliable_cpu(cpu)) 

__schedule_cpu(cpu); 

       /* sets the next task of this CPU */ 

 

  /* common actions for both reliable and relaxed CPUs */ 

  next = percpu(next_task, cpu)     /* get the next_task for this CPU */ 
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At this point we assume that at least CPU 0 is always reliable and can perform all the extra work for every 
relaxed CPU on the system. In the future, we will generalize this assumption to distribute the extra work on all 
available reliable CPUs. 

4.5.  System Setup 

The above mechanisms are independent from each other and are disabled by default. Each of them can be 
activated and studied separately in terms of performance and reliability trade-offs. Keeping them independent 
also facilitates debugging. The system call and page fault migration are implemented as per process features, 
whereas the scheduler migration is a system wide feature. 

We control the per task features with a new system call uniserver_ctl(int action). The user can explicitly enable 
/ disable the system call and page fault migration discussed earlier independently. In future versions, the 
default behavior may change. The actions that are currently available are shown in Figure 38. 

 

Figure 38: The uniserver_ctl() Actions 

The uniserver_ctl() system call sets the new features for the calling task and returns the old value. 

The system wide features such as changing the set of reliable CPUs and enabling the error resilient scheduler 
are controlled through the /sys interface of Linux. In particular, the control file is /sys/kernel/reliable_cpus. 
Reading this file returns the current mask of reliable CPUs. Writing a CPU mask notifies the system about the 
new reliable and relaxed CPU domains. The mask follows a common syntax across the kernel which is the 
same with the isolcpus command line parameter discussed earlier.  Some examples of valid actions on this 
control file in a system with eight available CPUs are shown in Figure 39. 

 

Figure 39: Example of System Configuration 

Each change, system wide or task specific, is audited in the kernel log to facilitate the monitoring and 
debugging of the system. When the system boots, all CPUs are marked as reliable assuming that the system 
starts in a fully reliable state. Also, the error resilient scheduler is disabled at startup.  

By running a series of stress tests on relaxed CPUs under such a configuration with all or some of the features 
enabled, we observe performance comparable to the vanilla Linux in the majority of the combinations of 

A_SYS_GETFLAGS     ‐ return the status of features for the task 

A_SYS_AFFINITY_ENABLE   ‐ enable system call migration 

A_SYS_AFFINITY_DISABLE  ‐ disable system call migration 

A_SYS_MMFAULT_ENABLE    ‐ enable page fault migration 

A SYS MMFAULT DISABLE   ‐ disable page fault migration 

#!/bin/bash 

# Get the current mask of reliable CPUs 

cat /sys/kernel/reliable_cpus 

# 0x03 ‐ CPUs 0 and 1 are reliable 

# Make CPUs 0 and 5 reliable 

echo "0,5" > /sys/kernel/reliable_cpus 

# Make CPUs from 0 to 4 reliable 

echo "0‐4" > /sys/kernel/reliable_cpus 

# Enable the error resilient scheduler 

echo uniserver_sched > /sys/kernel/reliable_cpus 

# Restore the default per CPU Linux scheduler 

echo Linux_sched > /sys/kernel/reliable_cpus 
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enabled features (17% overhead for computational intensive and 2% for I/O intensive applications with full-
scheme system call, page fault, scheduler migration). The different overhead for different kind of workloads 
brings up the opportunity of educated protection policies that trade-off the degree of protection with the 
associated overhead.  

Apart from performance, we see that under such a configuration, errors typically manifest at the user-level 
quite before the do at the system software level. System software is still affected, if we continue to lower the 
margins. Our mechanisms, thus, result to a configuration region where the system has indications that it is 
entering an unsafe operational state and the margins should be reconsidered.  
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5. Related Work 

In this section we overview some of the existing work on the implementation of error resilient hypervisors 
related to the heterogeneous domains that we also adopted in our initial scheme as discussed above, while 
we also mention recent work on check pointing and restart which are among the candidates for enhancing the 
robustness if it is needed in the final software release. 

5.1.  Reliable Hypervisor  

FTXen [13] is a fault tolerant implementation of the Xen hypervisor. Figure 40 shows the Xen hypervisor 
architecture. Xen supports two types of virtual domains, one privileged domain (domain0) which can access 
directly the Hardware and provides control interfaces to support and manage other domains. All other 
unprivileged domains are referred to as DomainU and every request that requires access to lower privilege 
levels is handled by the Xen hypervisor. 

 

Figure 40: Xen Architecture 

FTXen extends architecture of Xen and introduces an asymmetric logic by separating system CPUs to reliable 
and relaxed ones. Domain0 is pinned on the reliable CPUs, where DomainU to relaxed ones. In FTXen, 
updates to hypervisor critical data structures are restricted and only performed by reliable CPUs, thus when 
some relaxed CPUs have faults, the hypervisor is still intact and only the virtual machines assigned to these 
are affected. 

 

Figure 41: FTXen System Architecture 



D5.2 Error-Resilient Hypervisor   

 

 

 

© 2017. UniServer Consortium Partners. All rights reserved                                                                                             41 

 

Figure 41 shows the inner communication of Domains running on relaxed cores with Domain0. By making the 
Domain0 responsible for every DomainU, the system can recover reliably from a potential fault of relaxed 
CPUs.  

FTXen is based on the Xen hypervisor which is offering an asymmetric virtualization solution (separation of 
virtual domains to Domain0 and DomainU). On the contrary, our implementation is KVM-based inherits Linux 
Kernel and by nature is symmetric. This makes it more challenging to exploit the reliability-based heterogeneity 
of CPUs and protect them from hardware errors, as KVM treats all virtual machines equally to the host 
operating system in terms of reliability. 

Shown in Figure 42, Hive [14] provides fault containment for shared-memory multiprocessors through the 
notion of cells. Each cell manages a subset of the system's memory and processors like a separate operating 
system, focusing on its own correctness.  

 

Figure 42: Hive System Architecture of Each Cell and Hive Cell Management 

Under this system design, which is similar to a distributed system, each cell can isolate faults manifesting to 
itself from contaminating other cells. Hive uses a software strategy that discards the state of a faulty cell and 
page write protection for this purpose. Resource management, synchronization and load balancing between 
cells is controlled by a user space process which maintains global view of the system, notifies each cell and 
applies the appropriate policies. 

Cellular Disco [15] offers resource isolation similar to Hive, but resource management and fault isolation is 
provided through a virtualization layer, leading to better resource management and scalability. The system 
consists of semi-independent cells with the properties of a virtual cluster. The protection of the virtual machine 
monitor layer assumes that the hardware is designed with recovery mechanisms. In case of failure the 
hardware notifies the good nodes to initiate their own software recovery strategy and determine which virtual 
machines are affected. 

Focusing on recovering device drivers on Linux, the work on [16] describes a shadow driver mechanism based 
on Nooks [17] which provides transparent recovery under driver failures. A shadow driver layer introduces a 
shadow driver for each driver class which protects all same class drivers without the need of knowing 
implementation details of the actual drivers. Under normal execution a shadow driver passively monitors the 
requests to an actual driver. In case of failure, the shadow driver becomes active, intercepts the whole kernel-
driver communication and replays the configuration and pending requests to a new fresh driver instance. After 
the completion of this recovery phase it switches back to passive mode. 

5.2.  Hardware Mirror Memory  

Mirror memory [18] uses a doubled chip to back up the data immediately with extra hardware on the 
motherboard. When an error occurs, corrupt memory is quickly replaced by mirror memory. This technology is 
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widely used in high-end servers, such as HP's ProLiant server [19] memory, Dell's PowerEdge [4] series, APM 
Xgene [20] etc. Hardware mirror memory can also adapt to hot-plug memory technology [21]. Assisted by hot-
plug memory, damaged memory can be replaced while the machine continues running. The new memory 
modules are synchronized nearly instantly with mirror memory, resulting in zero downtime. Mirror memory 
often generates too much overhead, however, and is consistently more expensive than native memory. 

Memory mirroring really works only when supported by software at different levels, i.e. the data, application, 
or system level. These hardware solutions are thus limited to specific physical machines, and cannot be 
controlled at a sufficiently flexible or fine-grained mirroring level. Certain applications only duplicate a partial 
amount of critical data structures, like financial transactions, in memory. These data structures are usually 
duplicated with memory-mapped files, which incurs delays in backups as well as large overheads. 

5.3.  Software Mirror Memory 

Memory-based reliability is also considered a part of the entire system's availability. Redundancy has been 
applied at different levels of granularity, such as the hardware, thread, and instruction levels. SWIFT [22], a 
software-only fault-detection technique, duplicates a program's instructions, inserting explicit validation codes 
to compare the results of original instructions and their corresponding duplicates. CRAFT [23] later improved 
SWIFT's approach by adding extra hardware structures. In order to direct the level of high reliability, PROFIT 
adjusts the level of protection and performance at fine granularities based on SWIFT. However, SWIFT incurs 
unwanted performance overhead as the number of instructions can be easily doubled, mainly due to the full 
duplication of instructions. Another typical reliable system model is dual-machine VM replication, in which a 
backup server is synchronized to the primary host. There is already a wealth of research on VM migration and 
VM replication.   

 

Figure 43: The Architecture of Remus 

Remus: Figure 43 shows the architecture of Remus [24], in which the state of the primary VM is frequently 
recorded and transmitted to the backup server during execution. In a previous study's evaluation of Remus, 
Linux kernel compilation time was doubled and SPEC-Web [9] benchmarks suffered more slowdown when 
doing 40 checkpoints per second using a 1Gbit/s network connection for transmitting changes in the memory 
state. In order to improve the performance and scalability of Remus' checkpoint solution, ReNIC [24] provides 
an architectural extension to Single Root I/O Virtualization [25] (SR-IOV) for efficient I/O replications, but this 
requires new hardware-assisted I/O virtualization (such as SR-IOV). OCEAN enforces on-chip SRAM reliability 
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with a fault-tolerant buffer. It can optimally select the buffer size to minimize the energy overhead, with timing 
and area constraints, but it can only be applied to uniprocessor VMs and is highly architecture-specific. 

kMemvisor: Shown in Figure 44, kMemvisor [18] creates redundant virtual space via virtualization technology, 
then it inserts instructions (mirror instructions) through binary translation technology and replicates data to this 
space. Data can be recovered from the replica when errors happen. In this section, we will introduce the 
architecture and the process of the data replication and recovery. kMemvisor can be divided into two parts: 
memory management module, and code translation module. Memory management module monitors the page 
table related operations to create mirror page tables. Page table maps virtual addresses to physical addresses. 
Code translation management module takes charge of inserting mirror instructions. It identifies all memory 
writing instructions and replicates them. The difference between original instruction and replicated instruction 
is the destination address. Replicated instructions will write the same data to “mirror virtual address”. Mirror 
virtual address is a virtual address mapped to an additional physical area. This physical area is created by 
kMemvisor to store the redundant data. 

 

Figure 44: The Architecture of kMemvisor 
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Figure 45: The Architecture of COLO 

COLO: Shown in Figure 45, COLO [26] consists of a pair of networked physical nodes: The primary node 
running the Primary VM (PVM), and the secondary node running the Secondary VM (SVM) to maintain a valid 
replica of the PVM. PVM and SVM execute in parallel and generate output of response packets for client 
requests according to the application semantics. The incoming packets from the client or external network are 
received by the primary node, and then forwarded to the secondary node, so that both the PVM and the SVM 
are stimulated with the same requests. 

COLO receives the outbound packets from both the PVM and SVM and compares them before allowing the 
output to be sent to clients. The SVM is qualified as a valid replica of the PVM, as long as it generates identical 
responses to all client requests. Once the differences in the outputs are detected between the PVM and SVM, 
COLO withholds transmission of the outbound packets until it has successfully synchronized the PVM state to 
the SVM. 

5.4.  Checkpoint Setup 

Fixed Checkpoint: To setup checkpoint, one solution is to use a fixed time interval to periodically check the 
native system and then replicate the native data. The value of that interval usually comes from the trade-off of 
backup latency, the important time slot. For example, Remus optimizes checkpoint signaling in two ways: First, 
it reduces the number of inter-process requests required to suspend and resume the guest domain. Second, 
it entirely removes XenStore from the suspend/resume process. In the original code, when the migration 
process desired to suspend a VM it sent a message to Xend, the VM management daemon. Xend [27] in turn 
wrote a message to XenStore, which alerted the guest by an event channel (a virtual interrupt) that it should 
suspend execution. The guest’s final act before suspending was to make a hypercall which descheduled the 
domain and caused Xen [16] to send a notification to XenStore, which then sent an interrupt to Xend, which 
finally returned control to the migration process. This convoluted process could take a nearly arbitrary amount 
of time — typical measured latency was in the range of 30 to 40 ms, but we saw delays as long as 500 ms in 
some cases. 
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Event-driven Checkpoint: Although a fixed time value is useful in checkpoint setup, such a value cannot be 
aware of the dynamic allocation. So, some systems need the event-driven checkpoint to avoid the redundant 
replication. Event including the parity check, double check to the data of different VMs. 

For example, COLO [26] initiates a server-client system in the PVM and SVM at exactly the same state and 
then stimulate them with the same incoming events. Then, the identical results should be produced for a 
specific interval, which depends on the deterministic execution performance of PVM and SVM. As long as 
both VMs generate identical responses to client requests. If the output diverges due to the accumulated 
results of non-deterministic instructions, then the SVM is no longer a valid replica of the PVM. At that point, 
COLO will initiate a coarse-grained lock-step operation: It replicates the PVM state to the SVM. 
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6. Conclusion and Future Work 

This section presents a number of conclusions that we have drawn from the previous section. Most importantly, 
these conclusions also indicate opportunities for future directions for our work.   

6.1.  Conclusion 

A major new development pioneered by UniServer lies in significantly extending the capability of existing state-
of-the art software packages on ARM based micro-servers. Hardware operating in safe conditions needs less 
support for fault-tolerance than the hardware operating outside its nominal operating conditions. This inherent 
behavior offers opportunities for dynamic adaptation of the overhead incurred due to the heterogeneity and 
fault-tolerance operation of the system. In this deliverable, we have proposed an initial implementation of an 
error-resilient hypervisor for UniServer.  

In Section 2 of this document we reported on experiments with error-injection in both the kernelspace 
hypervisor (KVM) and the userspace hypervisor (QEMU). Through various benchmarks, we were able to 
perform characterization of sensitive data structures from both parts of hypervisor.   

Section 3 of the document discussed our design for a basic prototype of the hypervisor for heterogeneous 
reliability memory. Specifically, we partitioned the current physical memory by adding a less domain and we 
revised key memory syscalls: kmalloc, mmap, alloc_page. Finally, we enabled QEMU to support our reliable 
domain. For example, if QEMU creates the syscall backend, hypervisor can trap and redirect guest physical 
memory to the reliable domain. 

In Section 4, we migrated the sensitive syscall() to the reliable CPUs which could be guaranteed by adjusting 
voltage/ frequency etc. The main points of interest are the entry points from non-critical to critical code, namely 
the system calls, interrupts and page faults. Through various modifications to the current UniServer kernel 
(APM kernel), we successfully migrate the key code execution to the reliable CPUs from our definition. 

6.2.  Future Work 1: Enhancement of Hypervisor for Storage 

In the next months, we plan to evaluate the framework (error-resilient hypervisor) developed above with more 
applications and further refine it if needed. 

One other possible solution that we could adopt is mirror memory in virtual space. A mirror memory is a 
memory where the system can flexibly duplicate and from which it can recover data natively on an unreliable 
system. The time when data from native memory will be duplicated to the mirror memory will be determined 
by explicit checkpoints. The two techniques (mirror memory and checkpoint) are widely used in the hardware 
backup approaches [26] and could help enhance the robustness.  
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Figure 46: A Potential Implementation of Mirror Memory  

Figure 46 shows a potential example of mirror memory. We hope that it creates the mirror space in virtual 
space for the same process. When an OS is initialized, a block of physical memory space is reserved as a 
mirror area in the less reliable domain. If occurring process write in the native space, mirror write instruction is 
then replicated in the mirror space, and redundant data is written by the mirror instruction. 

Finally, considering the checkpoint, it requires massive testing data and analysis for predicting when an SDC 
error may occur. As we discussed in Section 2 we have started collecting such statistics for interfiling the time 
that tikes the system to crash after the detection of an error. For each checkpoint, the error-resilient hypervisor 
can backup sensitive data to mirror memory. Our motivation is to minimize record log and file in each 
checkpoint and reduce the frequency when triggering the checkpoint. 

6.3.  Future Work 2: Enhancement of Hypervisor for Execution 

Realizing a robust and error resilient hypervisor is a non-trivial undertaking. It requires a lot of testing, careful 
design, good knowledge of the underlying hardware, deep understanding of the kernel primitives and 
subsystems as well as studying the bibliography for existing approaches. In the current version, we have 
identified some limitations, which we are working to alleviate. 

Dynamic adjustment of the isolated CPUs according to the reliable CPUs needs to be introduced to the kernel. 
Apart from page faults, we currently ignore all other software exceptions that may occur because they are 
either fatal to the application (e.g. division by zero) or unlikely to happen in production (e.g. debug). Each 
exception is more or less a special case and a uniform solution to all may not be applicable. Besides the 
expected functionality of the migration approach of page faults, workqueues seem to be inefficient at least for 
the batch processes with full CPU utilization. As an alternative, we plan to reuse the same mechanism we 
have used for system calls based on the sched_setaffinity() function and migration threads.  

The migration of page faults is currently a primary source of performance degradation. We are exploring ways 
to minimize this, while keeping the desired functionality. One approach we plan to investigate is to delay the 
migration of the task back to the relaxed CPUs when the rate of page faults is higher than a system defined 
threshold. This also opens an opportunity for policy managers to configure the reliability level of the system. 

sched_setaffinity () is the only system call that may execute on relaxed CPUs and lead to system failure in 
case of error. By default, the migration of a task is performed by the migration thread of the sender CPU which 
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is a relaxed CPU when entering a system call. One way to further reduce the failure surface is to use migration 
threads from reliable CPUs only to handle the migration process in both entry and exit of system calls. 

Considering new features, there is still code that can be migrated away from relaxed CPUs. A more fine-
grained per-CPU clock interrupt manipulation may be feasible. Also, the time keeping of the system can be 
pinned to reliable CPUs if necessary. Another path worth exploring in order to improve performance is to 
increase the task priority for the duration of the migration. System calls are quite often in the critical path of the 
application. This is yet another control knob for policy managers to consider when taking decisions. 

Finally, the actual CPU change from reliable to relaxed and vise-versa is not currently included in the kernel. 
A user-space tool used by the policy manager performs the necessary changes and then notifies the system 
with the new configuration. In future versions, this functionality will instead become part of the kernel. Moreover, 
the above API is indicative and subject to change depending on the user requirements and the inclusion of 
new features.  
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