

© 2017. UniServer Consortium Partners. All rights reserved 1

D6.1 OpenStack Support for UniServer

Contract number 688540

Project website http://www.uniserver2020.eu

Contractual deadline Project Month 18 (M18): 31st July 2017

Actual Delivery Date 31th July 2017

Dissemination level Public

Report Version 1.0

Main Authors Mustafa Rafique (IBM), Srikumar Venugopal (IBM), Bin Wang (QUB),

Christos D. Antonopoulos (UTH), Chris Kalogirou (UTH)

Contributors

Reviewers Peter Lawthers (APM), Alejandro Lampropulos (WSE), Georgios

Karakonstantis (QUB)

Keywords OpenStack, X-Gene, Hypervisor, System Software Interface

Notice: The research leading to these results has received funding from the European Community’s
Horizon 2020 Programme for Research and Technical development under grant agreement no. 688540.

© 2017. UniServer Consortium Partners. All rights reserved

http://www.uniserver2020.eu/

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 2

Disclaimer
This deliverable has been prepared by the responsible Work Package of the Project in accordance with
the Consortium Agreement and the Grant Agreement Nr 688540. It solely reflects the opinion of the parties
to such agreements on a collective basis in the context of the project and to the extent foreseen in such
agreements.

Acknowledgements
The work presented in this document has been conducted in the context of the EU Horizon 2020. UniServer

is a 36-month project that started on February 1st, 2016 and is funded by the European Commission. The

partners in the project are:

The Queen’s University of Belfast (QUB)

The University of Cyprus (UCY)

The University of Athens (UoA)

Applied Micro Circuits Corporation Deutschland Gmbh (APM)

ARM Holdings UK (ARM)

IBM Ireland Limited (IBM)

University of Thessaly (UTH)

Worldsensing (WSE)

Meritorius Audit Limited (MER)

Sparsity SL (SPA)

More information

Public UniServer reports and other information pertaining to the project are available through the UniServer
public Web site under http://www.uniserver2020.eu.

Confidentiality Note
This document may not be copied, reproduced, or modified in whole or in part for any purpose without

written permission from the UniServer Consortium. In addition to such written permission to copy,

reproduce, or modify this document in whole or part, an acknowledgement of the authors of the

document and all applicable portions of the copyright notice must be clearly referenced.

http://www.uniserver2020.eu/

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 3

Change Log

Version Description of change

0.1 Initial draft

0.2 Added Ceilometer and Nova details

0.3 Added Ceilometer enhancements

0.4 Added Nova enhancements

0.5 Added results from applications

0.8 Added introduction and executive summary

0.9 Added contributions from UTH

1.0 Addressed reviewer’s comments

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 4

Table of Contents

EXECUTIVE SUMMARY ... 7

1. INTRODUCTION ... 8

1.1. ORGANIZATION .. 8

2. UNISERVER DATA CENTER MANAGEMENT REQUIREMENTS ... 9

2.1. UNISERVER IN THE DATA CENTER... 9
2.1.1. Hypervisor and OpenStack .. 9

2.2. OPENSTACK FRAMEWORK OVERVIEW ... 10
2.2.1. OpenStack ... 10
2.2.2. OpenStack Telemetry (Ceilometer) ... 11
2.2.3. OpenStack Compute (Nova) .. 12

3. OPENSTACK ENHANCEMENTS FOR UNISERVER .. 14

3.1. EXTENSIONS TO CEILOMETER ... 14
3.1.1. OpenStack Metrics for UniServer .. 15
3.1.2. Extending Polling Agents ... 16
3.1.3. Extending Libvirt Ceilometer Client.. 18

3.2. EXTENSIONS TO NOVA.. 18
3.2.1. VM Characteristics Component ... 18
3.2.2. VM Characterization Properties ... 19
3.2.3. UniServer Workload Resource Utilization Characteristics .. 21

3.3. LIBVIRT EXTENSIONS AND CONFIGURATIONS FOR OPENSTACK ON X-GENE .. 24

4. REFERENCES .. 25

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 5

Index of Figures

Figure 1: Relationship between hypervisor and OpenStack in UniServer Module ... 10
Figure 2: Ceilometer Data Collection Workflow ... 11
Figure 3: System Architecture and Interaction between Ceilometer Components.. 12
Figure 4: System Architecture and Interaction between Nova Components ... 13
Figure 5: Flow of monitoring data in OpenStack for UniServer ... 14
Figure 6: Implementation of Base Class for Adding Meters .. 17
Figure 7: Implementation of CPUPowerPollster Meter .. 18
Figure 8: Implementation of Libvirt inspect_cpu_power Function ... 18
Figure 9: VM Characteristics Component for UniServer ... 19
Figure 10: CPU Utilization of Jammer Detector Application .. 21
Figure 11: Resident Memory of Jammer Detector Application on Host .. 22
Figure 12: CPU Utilization of Polaris Benchmark .. 23
Figure 13: Resident Memory of Polaris Benchmark on Host .. 23
Figure 14: Requests and information flow through Hypervisor, Libvirt and OpenStack 24

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 6

Index of Tables

Table 1: List of Meters for UniServer in OpenStack .. 15
Table 2: List of properties returned by VM Characteristics component .. 19

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 7

Executive Summary

This document describes the OpenStack support for UniServer on Merlin-based X-Gene2 boards as developed

in Task 6.1 within the Work Package 6 (WP6) of the UniServer Project Description of Action (DoA). This is in

fulfillment of Deliverable D6.1, OpenStack Support for UniServer.

OpenStack is a middleware for cloud, which runs on multiple servers (nodes) that are part of a cloud cluster.

It is primarily used on x86 based machines, and has recently been made available for 64-bit ARM micro-

servers. However, in order to meet the unique requirements of UniServer project, special enhancements and

extensions are required in the current state of the art OpenStack. In particular extensions are needed to get

the enhanced telemetry data, run statistical analysis on the collected data and to get the characteristics of the

running virtual machines (VMs) in the cloud data centers. The work done in this deliverable would be used in

the other tasks of WP6, especially for the development of workload scheduler for UniServer and fault tolerance

techniques to improve the resilience of cloud data center.

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 8

1. Introduction

One of the main use cases and objectives of UniServer project is to run the target applications in a cloud

platform with improved energy efficiency while meeting the performance requirements of the target

applications. Several open source cloud platforms middleware software are available, such as OpenShift [1],

Cloudify [2], Cloud Foundry [3], etc., however, OpenStack [4] is considered as the de facto standard and a

solution of choice for cloud providers. To this end, Work Package 6 (WP6) aims at providing enhancements

and specialized resource management policies for OpenStack running on 64-bit ARM based micro-servers.

WP6 aims at improving the management of virtual machines (VMs) which are running on nodes with

heterogeneous power, and performance settings. This heterogeneity in power and performance adds an

additional parameter, i.e. reliability, that should be incorporated in managing the running VMs thus requires

developing techniques for improving the resilience of cloud infrastructure and the running workloads.

OpenStack is an open source software made available under the Apache 2.0 license, and is managed by the

OpenStack Foundation, a non-profit organization that oversees the software development as well as the

community around the project. Currently, around 150 organisations have contributed to OpenStack in some

form or shape. The presence of a large and active community was one of the drivers for the adoption of

OpenStack as the compute infrastructure management platform for the UniServer project.

In this deliverable (D6.1), we present the enhancements and extensions to the OpenStack framework [4] that

are introduced in off-the-shelf OpenStack for meeting the objectives of UniServer project. These

enhancements and extensions are developed and evaluated using X-Gene2 Merlin boards. The goal of these

enhancements and extensions is to demonstrate that the OpenStack framework can be used to fully utilize the

exposed extended margins from the underlying micro-servers in cloud deployments. The exposed extended

margins are available to OpenStack through the Libvirt [5] interfaces. In order to support the extended Libvirt

interfaces, extensions are required in the telemetry component of the OpenStack framework to collect and

store the fine-grain monitoring data in the persistent database. Furthermore, in order to make efficient and

effective resource management decision, it is required to statistically analyse historic resource utilization data

of the running VMs. As part of this deliverable, we provide extensions to the telemetry service of the

OpenStack framework to collect new metrics as collected by the UniServer hypervisor, as well as addition of

a new module in the compute component of the OpenStack framework to run the statistical analysis on the

historic resource utilization data.

The enhancements and extensions that are introduced in the OpenStack as part of this deliverable would be

used in developing advanced scheduling algorithm (D6.2), resource manager (D6.3), and proactive and

reactive resilience techniques (D6.5) for UniServer. The advanced scheduler and resource manager for

UniServer would use the enhanced telemetry data in determining the power, performance, and reliability of the

available node, and then determine the appropriate node for running the given VM. The resilience techniques

for UniServer would incorporate these enhancements and extensions in determining the potential node failure

and to trigger the migration process of a VM in the case of a node failure.

1.1. Organization

The rest of this deliverable is organized as follows. Section 2 presents the requirement for UniServer from

data center perspective and provide a background of OpenStack and its connection with the hypervisor.

Section 3 details extensions to OpenStack for UniServer, specifically in the telemetry and the compute

components of the OpenStack, and present results of determining the characteristics of the target applications

while they are running on OpenStack cloud hosted on Merlin X-Gene2 boards, which are 64-bit ARM based

micro-servers. Finally, Section 4 provides details of our OpenStack deployment on Merlin X-Gene2 boards.

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 9

2. UniServer Data Center Management Requirements

2.1. UniServer in the Data Center

One of the UniServer project’s primary objectives is to improve the power efficiency of data centers by taking
advantage of the extended margins of the processors to drive down micro-servers into a low voltage, low
power state. One of the primary consumers of power in a data center is the cooling system for the servers [6].
By running the servers in a low-voltage configuration, UniServer aims to reduce the stress on the cooling
system, thereby improving power usage effectiveness in the data center.

However, these advantages are accompanied by additional requirements at the system software level for
dealing with cloud infrastructure whose individual components are at higher risk of malfunction while running
at extended margins [7]. Customers deploy their applications within virtual machines that are deployed to
physical machines in the data center. For data center operators to make hardware configuration decisions
without affecting such workloads, the system software will be engineered such that it takes care of any faults
transparently without requiring customer applications to be re-engineered. This puts the onus on the data
center management software to be able to predict failures and detect anomalies, and migrate workloads in
order to protect them from failures.

In the following sections, we describe the design and development of mechanisms to meet this requirement at
the operating system, the hypervisor, and the data center levels. OpenStack was chosen as the management
software due to its open-source nature and its deployment in data centers across the globe. At the hypervisor
level, we describe facilities for providing detailed information about the power and performance of the
underlying processors. We also describe the efforts made at the operating system level to isolate unreliable
domains in the main memory. Then, we describe the extensions made to OpenStack in order to incorporate
this extended information.

2.1.1. Hypervisor and OpenStack

Hypervisor, i.e. KVM [8] in the context of UniServer, is a module within the kernel space along with other

modules of the operating system such as the scheduler, governors, cgroups etc. which are used to manage

and direct the overall system operation. The hypervisor is responsible for creating and running one or more

VMs on the guest machines (i.e., in the user space). In a typical operating system, memory is divided into at

least two distinct accessible regions: user space and kernel space. The user space, is a set of locations where

normal user processes, i.e. everything other than the kernel, run. The role of the operating system kernel is to

manage applications running in this space from interfering with each other, and the machine. The kernel space,

is the location where the code of the kernel is stored and executed. Processes running under the user space

have access only to a limited part of the memory, whereas the kernel has access to all the memory. Processes

running in user space also do not have access to the kernel space. User space processes can only access a

small part of the kernel via an interface exposed by the kernel through the system calls.

Shown in Figure 1, at the hypervisor layer, hardware metrics related mainly to power and performance (such

as CPU and memory utilization, cache misses etc.) are already monitored. by an existing application

programming interface (API). In UniServer we plan to enhance such an API to make it able to collect and

monitor information related to reliability by interacting with UniServer specific daemons. For example, CPU

errors could be acquired from the HealthLog module through new functions.

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 10

Figure 1: Relationship between hypervisor and OpenStack in UniServer Module

Going further-up to the OpenStack, which is another guest layer for the resource management, it extracts

information for every VM and the overall system using Libvirt [5]. Libvirt is a hypervisor-independent

virtualization API and toolkit that interacts with the virtualization capabilities of a range of operating systems.

Essentially, Libvirt is an intra-node manager that will be responsible for the communication between the

OpenStack and the hypervisor in UniServer. Within the OpenStack, different components, such as Ceilometer,

Nova, etc. talks with the Libvirt interface, which collects information and distributes it to other OpenStack

components as required.

2.2. OpenStack Framework Overview

2.2.1. OpenStack

OpenStack is a collection of software components that enable the management of collections of compute,

storage and network resources so that these can be virtualized and made available to end users following the

cloud computing paradigm. That is, OpenStack enables the Infrastructure as a Service (IaaS) model by

provisioning and managing the underlying hardware such that users can obtain on-demand virtual machines

with specific requirements for processing, memory and storage.

Briefly, the primary components of OpenStack are as below:

1. Nova: responsible for provisioning and management of virtual machines on compute nodes

2. Glance: stores the images that are used as the disk templates for booting VMs

3. Keystone: manages authentication and authorisation for invoking OpenStack commands

4. Swift: is an object storage system wherein uniquely identified data items can be manipulated

independent of their location

5. Cinder: allocates filesystem blocks that can be attached to VMs as extended disk storage

6. Neutron: provides networking services for OpenStack components as well as VMs

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 11

7. Ceilometer: provides telemetry services to keep track of resource usage and performance

8. Horizon: is a web-based user interface to interact with an OpenStack installation

The UniServer project focuses on enabling energy efficient yet high performance micro servers in the data

centers to enable a seamless virtualised environment that spans cloud as well as edge computing

environments. UniServer aims to achieve its objectives by exposing more detailed information about a physical

machine as well as provide dynamic information about the machine’s health through an extended HEI

(Hardware Exposure Interface). This extended information is aimed to be used for dynamic scheduling of VMs

in order to achieve energy efficiency in the data center. As such, the focus of the UniServer project and Work

Package 6 within it, is on two important components out of the eight listed above: Ceilometer, for collecting the

extended information exposed by the UniServer machines, and Nova, for supporting dynamic scheduling and

management of nodes using this additional information.

The next two sections will discuss Ceilometer and Nova in detail followed by the discussion on our extensions

to these two components to realise UniServer objectives.

2.2.2. OpenStack Telemetry (Ceilometer)

Figure 2 shows the data collection, storage and usage workflow of Ceilometer [9]. The data is first collected

from the physical and virtual resources using APIs exposed by the relevant system resource and components

either through polling or notification agents. The data can also be sent directly into Ceilometer system by other

OpenStack components (e.g., Nova, Glance, Neutron, etc.) by adding a message to the notification bus. The

collected sample from a meter can then be transformed into more meters if required. After the transformation,

the data is sent to one or more publisher (e.g., Gnocchi, Oslo messaging service, etc.), where each publisher

saves the data into persistent storage, typically in a database, through the message bus or dispatch it to the

external system for consumption. Finally, the stored data can be read by OpenStack services or any other

external entity through REST APIs exposed by the Ceilometer.

TransformCollect Publish Store Read

Figure 2: Ceilometer Data Collection Workflow

Figure 3 shows the interaction between different Ceilometer components. Ceilometer also provides two agents,

namely notification agent and polling agent, to collect data about physical and virtual resources of the

datacenter. OpenStack components inserts the notifications in the notification bus, which is picked by the

notification agent for processing. The notification agent converts the notifications to events and samples and

applies preconfigured publishing pipeline and transformation rules that are specified in pipeline.yaml and

event_pipeline.yaml configuration files in YAML (Yet Another Markup Language) format. The polling

agents provide daemons that periodically poll the data from other OpenStack services and external system

components (e.g., hypervisor). There are three pollster plugins, i.e. compute, central, and IPMI, used by a

typical deployment. Finally, the collector stores the samples in the database for persistent storage and can

also send them to the external systems for storage and monitoring.

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 12

Figure 3: System Architecture and Interaction between Ceilometer Components

There are several built-in meters that are available to the Ceilometer. These meters report data about physical

and virtual resources that are available in the data centers. Logically, the predefined meters can be organized

into different system components, e.g., IPMI, SNMP, and SDN controllers etc., and OpenStack components,

e.g., compute, image, block and object storage, and networking components, etc. The complete list of existing

meters that are currently available can be found at OpenStack Administrator Guide [10].

2.2.3. OpenStack Compute (Nova)

Figure 4 shows the architecture and interaction between different components of OpenStack Nova module.

The API module receives the requests from the user and adds them for processing in the queue. It also

receives the results back from the queue and sends them to the user. The Scheduler service in Nova

determines how the requests should be processed. One of its important tasks is to determine which physical

host the given VM should be executed on. Console and ConsoleAuth services in Nova provide remote console

or remote desktop access to the running VMs. The Certificate service generates certificates for euca-bundle-

image for EC2 compatible API, and is not required in deployment where images are not required to be bundled

for EC2. The Conductor service in Nova isolates the database functionalities for the compute nodes, and

enables them to function without accessing the database. The Compute service manages the physical hosts

for running the VMs, and controls the communication between the VMs and the hypervisor through hypervisor

Collector

Ceilometer
Agents

Polling

Notification

System
Components

OpenStack
Components

Notification Bus

Database Ceilometer API
External System (e.g.,

Reading Data)

Publishing
Pipeline

External System (e.g.,
Data Storage, Monitoring)

Publishing
Pipeline

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 13

APIs, such as, Libvirt API [5], Xen API [11], and VMware API [12].

Figure 4: System Architecture and Interaction between Nova Components

DatabaseQueue

Api Scheduler console

Certificate

Compute

Hypervisor

ConsoleAuth Conductor

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 14

3. OpenStack Enhancements for UniServer

As discussed in the previous sections, the enhancements to OpenStack are critical for obtaining the

information required by the cloud middleware to improve the performance, reliability, and the energy

consumption of the data center. To this end, the two components in OpenStack that are of particular interest

for UniServer are the telemetry (Ceilometer) and compute (Nova). Ceilometer provides detailed performance

and utilization measurements that are related to the physical and virtual resource, while Nova provides the

computing fabric controller for the cloud and manages the virtual machines running in the data center. The

following subsections describe the enhancements made in Ceilometer and Nova components of OpenStack

for meeting the objectives of UniServer.

3.1. Extensions to Ceilometer

Currently, the monitoring information reported by the Libvirt and hypervisor to the Ceilometer is focused mainly

towards the virtual resources. However, because of having reliable and unreliable servers operating in a single

cloud setup, it is required for the UniServer project to gather information about physical resources pertaining

to the health of the underlying servers. In Ceilometer, node level measurements are gathered through IPMI

inspector and pollster, however, these measurements are primarily focused towards OpenStack bare metal

(Ironic) services. Originally, the IPMI was a part of Ceilometer, but now it has been moved to Ironic code base,

making it specific to bare metal services. Furthermore, existing meters provided in the OpenStack for

underlying resources do not collect data for the metrics, such as correctable and uncorrectable errors in

memory, caches and MCUs, which are required in the UniServer project for determining the health of the

underlying server. To close the gap between the information currently being gathered by Ceilometer, and the

requirements of the UniServer project, we extended Ceilometer by adding new meters in it.

As discussed in the previous sections, Ceilometer component in OpenStack gathers various data about the

health and performance of the underlying physical and virtual resources. In the context of UniServer, Figure

6 shows the flow of monitoring data from Hardware-Exposure-Interface (HEI) to OpenStack. OpenStack

Ceilometer service collects the data from the hypervisor through Libvirt. The hypervisor gets the information

through StressLog and HealthLog daemons which interact with the HEI to get the up-to-date information about

the health and performance of resources.

Figure 5: Flow of monitoring data in OpenStack for UniServer

Ceilometer

Libvirt

Hypervisor

HealthLog /
StressLog

HEI

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 15

3.1.1. OpenStack Metrics for UniServer

One of the goals of OpenStack extensions for UniServer is to enhance its telemetry service with fine grained

and specialized measurements related to the utilization and consumption of the underlying system resources.

To this end, UniServer introduces several new measurements to the existing meters available in the

Ceilometer. Table 1 provides the list of new meters that are added for UniServer in the Ceilometer component

of OpenStack. These meters largely deal with the current state of the system in terms of utilization,

temperature, correctable and uncorrectable errors in memory and cache hierarchies. These metrics would be

useful in the related tasks of WP6 where we plan to develop scheduling policies for the cloud workloads and

resource management policies for improving the resilience and fault tolerance capabilities of the cloud

infrastructure. Note that such metrics will be estimated using inputs from the low level metrics that were

described in deliverables D3.2 and D3.3.

Table 1: List of Meters for UniServer in OpenStack

Meter Meter Information

system.cpu.utilization Total time spent for system by all CPUs in msec

system.memory.free.absolute Absolute amount of free system memory in KB

system.cpu.power.absolute Absolute power consumption of all CPUs in Watts

system.memory.power.absolute Absolute power consumption of system memory in

Watts

system.socket.temperature.absolute Absolute CPU temperature in Celsius

system.dram.errors.correctable.absolute Absolute amount of correctable DRAM errors

system.dram.errors.uncorrectable.absolute Absolute amount of uncorrectable DRAM errors

system.mcu.errors.correctable.absolute Absolute amount of correctable MCU errors

system.mcu.errors.uncorrectable.absolute Absolute amount of uncorrectable MCU errors

system.l3.errors.correctable.absolute Absolute amount of correctable L3 cache errors

system.l3.errors.uncorrectable.absolute Absolute amount of uncorrectable L3 cache errors

system.l2.errors.correctable.absolute Absolute amount of correctable L2 cache errors

system.l2.errors.uncorrectable.absolute Absolute amount of uncorrectable L2 cache errors

system.l1.errors.correctable.absolute Absolute amount of correctable L1 cache errors

system.l1.errors.uncorrectable.absolute Absolute amount of uncorrectable L1 cache errors

system.dram.errors.correctable.frequency Frequency of correctable DRAM errors per hour

system.dram.errors.uncorrectable.frequency Frequency of uncorrectable DRAM errors per hour

system.mcu.errors.correctable.frequency Frequency of correctable MCU errors per hour

system.mcu.errors.uncorrectable.frequency Frequency of uncorrectable MCU errors per hour

system.l3.errors.correctable.frequency Frequency of correctable L3 cache errors per hour

system.l3.errors.uncorrectable.frequency Frequency of uncorrectable L3 cache errors per hour

system.l2.errors.correctable.frequency Frequency of correctable L2 cache errors per hour

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 16

Meter Meter Information

system.l2.errors.uncorrectable.frequency Frequency of uncorrectable L2 cache errors per hour

system.l1.errors.correctable.frequency Frequency of correctable L1 cache errors per hour

system.l1.errors.uncorrectable.frequency Frequency of uncorrectable L1 cache errors per hour

3.1.2. Extending Polling Agents

The implementation of adding new meters in the polling agent requires the following:

• Implementation of a new meter in pollster module

• Implementation of wrapper function to use the exposed Libvirt interface in the inspector module of

Ceilometer

UniServer uses a hierarchical approach and encapsulates the functionality of adding a new meter in the base

class. The base class is extended from the PollsterBase object to get the minimum amount functionality

and data to implement a new meter. Figure 6 shows the implementation of the base class, which provides the

required get_samples functionality to the derived classes. It also implements two important properties,

namely inspector and default_discovery, which is required by the polling agent to determine if new

samples should be extracted during this polling cycle. It should be noted that default_discovery, which

is an abstract method from the base class, would return ‘local_node’ for the meters which are related to

the physical resources of the data centre, whereas it should return ‘local_instances’ for the meters that

gather data about the virtual instances running in the data centre.

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 17

class _Base(plugin_base.PollsterBase):

 @property

 def inspector(self):

 try:

 inspector = self._inspector

 except AttributeError:

 inspector = virt_inspector.get_hypervisor_inspector(self.conf)

 return inspector

 def setup_environment(self):

 super(_Base, self).setup_environment()

 self.polling_failures = 0

 @property

 def default_discovery(self):

 return 'local_node'

 @abc.abstractmethod

 def get_value(self, stats):

 """Returns value for a sample."""

 @abc.abstractmethod

 def read_data(self, cache):

 """Returns data sample for meter."""

 def get_samples(self, manager, cache, resources):

 try:

 stats = self.read_data(cache)

 except Exception, e:

 self.polling_failures += 1

 self.polling_failures = 0

 metadata = {'node': self.conf.host }

 if stats:

 data = self.get_value(stats)

 yield sample.Sample(

 name=self.NAME, type=self.TYPE, unit=self.UNIT,

 volume=data, user_id=None, project_id=None,

 resource_id=self.conf.host, resource_metadata=metadata)

Figure 6: Implementation of Base Class for Adding Meters

In order to add a new measurement, a specialized class can derive from this base class and override the

required class variables and functions as appropriate for the specific meter. Figure 7 shows the implementation

of CPUPowerPollster meter, which returns the absolute power consumed by a CPU in watts. Typically, there

are three types of meters that can be defined in the Ceilometer, i.e., cumulative, gauge, and delta. Since this

meter returns the absolute power consumption of the CPU at a given instance, therefore it sets the meter type

as ‘TYPE_GAUGE’. It is also required to implement the abstract method read_data to read the measurement

using the implemented Libvirt API in the Libvirt client module of Ceilometer which is returned in the consolidate

data structure with different system metrics. Finally, the abstract method get_value is implemented to extract

and return the specific value of interest that is related to the target meter from the statistics that are collected

from the Libvirt client module.

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 18

 class CPUPowerPollster(_Base):

 NAME = "system.cpu.power.absolute"

 TYPE = sample.TYPE_GAUGE

 UNIT = "Watts"

 def read_data(self, cache):

 system_info = self.inspector.inspect_cpu_power()

 return system_info

 def get_value(self, stats):

 return stats[0]

Figure 7: Implementation of CPUPowerPollster Meter

3.1.3. Extending Libvirt Ceilometer Client

OpenStack encapsulate all functionalities and interfaces that are related to the Libvirt in a separate

client/module for each of its software components, such as, Nova, and Ceilometer. For Ceilometer, all Libvirt

functionalities are encapsulated inside the compute mode under virt/Libvirt client, where inspector abstraction

is implemented in LibvirtInspector module. In order to use the extended Libvirt interfaces that have been

proposed in WP5, a new python API should be implemented in this module. Figure 8 shows the implementation

of inspect_cpu_power function which fetches the current power consumption of the CPU as it is

implemented by the extended Libvirt for UniServer by using the local Libvirt connection object. This

implementation uses the local connection to the Libvirt daemon to call the specific API to get the broader

statistics about the CPU power consumption. The required statistics are then stored and returned in a newly

created PowerStats named tuple collection for the consumption in the CPUPowerPollster object.

def inspect_cpu_power(self, instance=None, duration=None):

 stats = self.connection.getPowerUniserver()

 system_stat = stats['CPU']

 if system_stat is None:

 LOG.warning("inspect_cpu_power system_stat is null")

 return virt_inspector.PowerStats(watts=-1)

 return virt_inspector.PowerStats(watts=system_stat[0])

Figure 8: Implementation of Libvirt inspect_cpu_power Function

3.2. Extensions to Nova

One of the objectives of WP6 is to develop adaptive scheduling algorithms and resource management

techniques for running workloads in the cloud. In order to develop efficient and effective scheduling and

resource management techniques, it is important for the cloud middleware, i.e., OpenStack, to know the

current characteristics, in terms of resource requirements, of the running VMs. To this end, we have extended

OpenStack Compute, i.e., Nova, component [13] with a new VM Characteristics module that returns the

characteristics of a specific VM. Moreover, a corresponding API has been added to Nova to access this

module. In the context of UniServer project, VM Characteristics module currently focuses on CPU and memory

resources, however, this can be further extended to incorporate other resources, such as network and storage.

3.2.1. VM Characteristics Component

VM Characteristics component can be accessd either through command line interface (CLI) or through the

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 19

REST API. The VM Characteristics fetches the historic data about the relevant CPU and resident memory

consumption metrics from the Ceilometer database and runs linear regression on the retrived data to get the

VM resource requirements trend during the specific time window. For UniServer workloads, especially, the

jammer detector application and Polaris benchmark that are discussed in the following section, we have found

out that an analysis window of 10 minutes gives us a stable and reasonable estimate about a VMs resource

characteristics.

Figure 9 shows the architecture of VM Characteristics component with respect to Nova, and how it interacts

with other Nova components. User request is captured by Nova API, and then passed on to the compute

manager which interacts with the Libvirt driver and calls the get_characteristics method and passes on

the name of the VM to get its characteristics. The get_characteristics method retrieves the historic data

through python Ceilometer client and runs the statistical analysis on the retrieved data. The results are then

packed inside an object and returned back to the manger. Eventually, the results are transformed and reported

back to the user either in a tabular or JSON format based on the original request, i.e., CLI or REST API,

respectively.

Figure 9: VM Characteristics Component for UniServer

VM Characteristics component provides a historic view of the resource consumption trend of a particular VM,

and we plan to use it in D6.2, D6.3, and D6.5 of the project. Moreover, we also plan to enhance this component

after finalizing the metrics collected by the UniServer hypervisor in D5.3.

3.2.2. VM Characterization Properties

The following table provide a list of properties that are being returned by the VM Characteristics component.

Table 2: List of properties returned by VM Characteristics component

Property Description

cpu_util_amax Maximum CPU utilization in percentage of the VM during the

analysis window

cpu_util_amin Minimum CPU utilization in percentage of the VM during the

analysis window

Nova

API

Server
Characteristics

Compute

API

Manager

RPCAPI

Virt

Libvirt

Driver

Ceilometer
Database

get_characteristics

Analytics / Statistics
for a VM

CLI/REST request
for VM characteristics

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 20

Property Description

cpu_util_mean Mean CPU utilization in percentage of the VM during the

analysis window

cpu_util_median Median CPU utilization in percentage of the VM during the

analysis window

cpu_util_peak_to_peak Difference between the maximum and minimum CPU

utilization in percentage of the VM during the analysis window

cpu_util_slope Slope of the line of best fit of the historic data for CPU

utilization during the analysis window

cpu_util_slope_intercept Intercept of the slope of the line of best fit of the historic data

for CPU utilization during the analysis window

cpu_util_slope_std_err Standard error of estimate in calculating the slope of the line

of best fit for CPU utilization of the historic data during the

analysis window

cpu_util_std Standard deviation in CPU utilization of the VM during the

analysis window

cpu_util_variance Variance in CPU utilization of the VM during the analysis

window

image_memory Maximum amount of memory in MB the instance can have

resident_memory_amax Maximum resident memory in MB at host for the VM during

the analysis window

resident_memory_amin Minimum resident memory in MB at host for the VM during the

analysis window

resident_memory_mean Mean resident memory in MB at host for the VM during the

analysis window

resident_memory_median Median resident memory in MB at host for the VM during the

analysis window

resident_memory_peak_to_peak Difference between the maximum and minimum resident

memory in MB at host for the VM during the analysis window

resident_memory_slope Slope of the line of best fit of the historic data for resident

memory during the analysis window

resident_mem _slope_intercept Intercept of the slope of the line of best fit of the historic data

for resident memory during the analysis window

resident_mem_slope_std_err Standard error of estimate in calculating the slope of the line

of best fit of the historic data for resident memory during the

analysis window

resident_memory_std Standard deviation in resident memory of the VM at host

during the analysis window

resident_memory_variance Variance in resident memory of the VM at host during the

analysis window

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 21

3.2.3. UniServer Workload Resource Utilization Characteristics

The VM Characteristics component is used to determine the characteristics of two of the target applications

that would be used in UniServer, i.e., jammer detector application from WSE and Polaris benchmark from MER.

These applications are executed on two-node OpenStack cluster running on X-Gene2 Merlin boards. Each X-

Gene2 boards has 8 CPUs and 32GB of main memory. These applications are executed to observe the

patterns of their CPU utilization in the VM and resident memory utilization at the host server for the respective

application as reported by the VM Characteristics component, and also to demonstrate a working OpenStack

on X-Gene2 boards.

3.2.3.1 Jammer Detector Application

The Jammer Detection benchmark is based on a WSE solution called Denial of Service (DoS) sensing. This

solution consists of a sensor capable of detecting wireless interference (jamming) signals that attempt to cause

wireless networks DoS. The use of these wireless jamming devices is considered a security attack and the

main goal of the solution is to detect the threat and identify the type of jammer attack that is being performed.

The details of this benchmark are provided in D4.4 of UniServer project.

Jammer detector benchmark is executed on an OpenStack cloud running on X-Gene2 Merlin boards. Currently,

this application is configured as on offline application, such that it reads and processes the input data from

within the VM. Figure 10 shows the trend of CPU utilization in the VM as observed by periodic use of VM

Characteristics API, where four of the properties returned by the VM Characteristics module that are related to

CPU utilization are plotted. It can be observed that the jammer detector application uses about 45% maximum

overall CPU inside the VM. We also plot the average CPU utilization of the VM as it can be observed from

within the VM during the execution of the benchmark using the top Linux utility. At each point the observation

window of VM Characteristics module is 10 minutes, therefore, for the first 10 minutes the minimum CPU

utilization observed during the observation window is close to zero. However, after the 10th minute, the

maximum and minimum utilization observed during the particular window point come close to each other and

follow this trend till the application execution is completed at 31st minutes.

Figure 10: CPU Utilization of Jammer Detector Application

0

10

20

30

40

50

60

0
0

:0
0

:0
0

0
0

:0
2

:2
4

0
0

:0
4

:2
8

0
0

:0
6

:3
1

0
0

:0
8

:3
1

0
0

:1
0

:1
2

0
0

:1
1

:4
6

0
0

:1
3

:1
9

0
0

:1
4

:4
4

0
0

:1
6

:1
1

0
0

:1
7

:3
3

0
0

:1
8

:4
6

0
0

:1
9

:5
6

0
0

:2
1

:0
7

0
0

:2
2

:1
6

0
0

:2
3

:2
6

0
0

:2
4

:3
2

0
0

:2
5

:3
7

0
0

:2
6

:4
3

0
0

:2
7

:4
6

0
0

:2
8

:5
5

0
0

:3
0

:0
7

C
P

U
 U

ti
liz

at
io

n
 (

%
)

Application Time (hh:mm:ss)

Jammer Detector CPU Utilization

cpu_util_amax cpu_util_amin cpu_util_mean

cpu_util_median cpu_util_actual

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 22

Figure 11 shows the trend in the resident memory consumption on host while running the jammer detector

application. The resident memory on the host includes the memory allocated by the VM in addition to the

overhead of QEMU process, and it is reported by the hypervisor. It shows that this application is memory

intensive on the host, and it consumes about 6.5 GB of memory from the host, however, it the resident memory

utilization gets stabilized around the 13th minute of its execution.

Figure 11: Resident Memory of Jammer Detector Application on Host

3.2.3.2 Polaris Benchmark

The Polaris Platform was developed as a third-party service for Investment Firms (IFs) to comply with the

European Markets Infrastructure Regulation (EMIR) that came into force on 16 August 2012. The Regulation

requires that all derivatives transactions need to be reported to Trading Repositories (TRs). The reporting of a

derivative transaction should take place at T+1, where T is the transaction date, and it involves any daily

modifications/updates of the transaction until the termination of the derivative contract. This requires the

processing and validation of a large amount of information and handling sensitive client’s data. The details of

this benchmark are provided in D4.3 of the UniServer project.

Polaris benchmark is executed on an OpenStack cloud running on X-Gene2 Merlin boards. Polaris benchmark

initializes the database for execution and then run the benchmark on the dataset that is currently packaged

inside the VM. Figure 12 shows the trend of CPU utilization in the VM as observed by periodic use of the VM

Characteristics API. We also plot the average CPU utilization of the VM as it can be observed from within the

VM during the execution of the benchmark using the top Linux utility. This show that the Polaris benchmark

steadily uses about 58% overall maximum CPU during its operations. However, the gap between the maximum

and the minimum CPU utilization is more for the Polaris benchmark as compared to the jammer detector

application. This can be explained by the fact that Polaris benchmark reads the data from database whereas

the jammer detector application reads the data from the file, therefore, making the later continuously operate

at the same pace.

0
1000
2000
3000
4000
5000
6000
7000

0
0

:0
0

:0
0

0
0

:0
3

:0
4

0
0

:0
5

:4
6

0
0

:0
8

:3
1

0
0

:1
0

:4
4

0
0

:1
2

:5
2

0
0

:1
4

:4
4

0
0

:1
6

:3
7

0
0

:1
8

:2
3

0
0

:1
9

:5
6

0
0

:2
1

:3
0

0
0

:2
3

:0
2

0
0

:2
4

:3
2

0
0

:2
5

:5
8

0
0

:2
7

:2
6

0
0

:2
8

:5
5

0
0

:3
0

:2
8

0
0

:3
1

:5
2

0
0

:3
3

:1
9

R
es

id
en

t
m

em
o

ry

(M
B

)

Application Time (hh:mm:ss)

Jammer Detector Resident Memory on Host

resident_memory_amax resident_memory_amin

resident_memory_mean resident_memory_median

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 23

Figure 12: CPU Utilization of Polaris Benchmark

Figure 13 shows the trend in resident memory consumption on host while running the Polaris benchmark.

Compared to the jammer detector application, the resident memory consumption of Polaris benchmark is

significantly less, i.e., the maximum observed resident memory consumed at host by the Polaris benchmarks

is about 1.5 GB, which indicates that it can be packaged in VMs with less amount of memory and these VMs

can be scheduled on servers with less amount of available memory.

Figure 13: Resident Memory of Polaris Benchmark on Host

0

10

20

30

40

50

60

70

0
0

:0
0

:0
0

0
0

:0
1

:2
5

0
0

:0
2

:4
1

0
0

:0
3

:4
9

0
0

:0
4

:5
8

0
0

:0
5

:5
4

0
0

:0
6

:5
3

0
0

:0
7

:4
8

0
0

:0
8

:3
9

0
0

:0
9

:3
3

0
0

:1
0

:2
6

0
0

:1
1

:1
4

0
0

:1
2

:0
4

0
0

:1
3

:0
0

0
0

:1
3

:4
8

0
0

:1
4

:4
5

0
0

:1
5

:4
0

0
0

:1
6

:2
9

0
0

:1
7

:1
8

0
0

:1
8

:1
2

0
0

:1
9

:0
7

0
0

:2
0

:0
0

C
P

U
 U

ti
liz

at
io

n
 (

%
)

Application Time (hh:mm:ss)

Polaris Benchmark CPU Utilization

cpu_util_amax cpu_util_amin cpu_util_mean

cpu_util_median cpu_util_actual

1360
1380
1400
1420
1440
1460
1480
1500
1520

0
0

:0
0

:0
0

0
0

:0
1

:2
5

0
0

:0
2

:4
1

0
0

:0
3

:4
9

0
0

:0
4

:5
8

0
0

:0
5

:5
4

0
0

:0
6

:5
3

0
0

:0
7

:4
8

0
0

:0
8

:3
9

0
0

:0
9

:3
3

0
0

:1
0

:2
6

0
0

:1
1

:1
4

0
0

:1
2

:0
4

0
0

:1
3

:0
0

0
0

:1
3

:4
8

0
0

:1
4

:4
5

0
0

:1
5

:4
0

0
0

:1
6

:2
9

0
0

:1
7

:1
8

0
0

:1
8

:1
2

0
0

:1
9

:0
7

0
0

:2
0

:0
0

R
es

id
en

t
M

em
o

ry
(M

B
)

Application Time (hh:mm:ss)

Polaris Benchmark Resident Memory on Host

resident_memory_amax resident_memory_amin

resident_memory_mean resident_memory_median

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 24

3.3. Libvirt Extensions and Configurations for OpenStack on X-Gene

As discussed in WP5, OpenStack can monitor the status of cloud/edge nodes through Libvirt. The extended

version of the Libvirt for UniServer, described in D5.1, can provide information about the thermal state, the

power consumption and the hardware-detected error rate of nodes. Except from reporting the status of the

node to OpenStack, we have also extended Libvirt to accept requests from OpenStack to configure nodes as

required by the cloud workload and the performance, power and reliability constraints OpenStack tries to

satisfy at the system-level.

OpenStack uses a python interface, similar to the ones used for the information flow from the hypervisor to

OpenStack to request node configuration at a specific performance, power and reliability level. Libvirt receives

the request and notifies the hypervisor. The hypervisor tries to configure the system to satisfy the request, and

reports success or failure (to Libvirt, which forwards the status to OpenStack). The interface and the

implementation will be described in detail in deliverable D5.3. Figure 14 extends the flow of information

between the Libvirt and OpenStack with the flow of the requests from OpenStack to Libvirt.

Figure 14: Requests and information flow through Hypervisor, Libvirt and OpenStack

We provide multiple levels of performance, power efficiency and reliability, for the CPU and multiple levels of

power efficiency versus reliability for RAMs. The levels span both nominal configuration points of the hardware,

as well as points exploiting the extended margins recognized by the characterization of the specific parts. More

aggressive configurations within the extended margins are more power/performance-efficient, however at the

cost of an increased probability of faults. OpenStack monitors the status of the node and decides the

appropriate configuration level. For example, if the expected error rate is higher than the acceptable rate for

the SLAs OpenStack has to conform to, it can send a request to reset the configuration within or closer to the

nominal settings envelope.

D6.1 OpenStack Support for UniServer

© 2017. UniServer Consortium Partners. All rights reserved 25

4. References

[1] S. Pousty and K. Miller, Getting Started with OpenShift, 1491900474, 9781491900475: O'Reilly Media,

Inc., 2014.

[2] M. Cinque, D. Cotroneo, F. Frattini and S. Russo, “To Cloudify or Not to Cloudify: The Question for a

Scientific Data Center,” IEEE Transactions on Cloud Computing, vol. 4, no. 1, pp. 90-103, 2016.

[3] C. F. Foundation, “Cloud Foundry Overview,” [Online]. Available:

https://docs.cloudfoundry.org/concepts/overview.html.

[4] OpenStack, “Open source software for creating private and public clouds,” [Online]. Available:

https://www.openstack.org/.

[5] Libvirt, libvirt - The virtualization API, http://libvirt.org/index.html.

[6] E. Pakbaznia and M. Pedram, “Minimizing Data Center Cooling and Server Power Costs,” in

Proceedings of the 2009 ACM/IEEE International Symposium on Low Power Electronics and Design

(ISLPED), San Fancisco, CA, USA, 2009.

[7] J. Shuja, K. Bilal, S. A. Madani, M. Othman, R. Ranjan, B. P. and S. U. Khan, “Survey of Techniques

and Architectures for Designing Energy-Efficient Data Centers,” IEEE Systems Journal, vol. 10, no. 2,

pp. 507-519, 2016.

[8] A. Kivity , Y. Kamay, D. Laor, U. Lublin and A. Liguori, “KVM: the Linux Virtual Machine Monitor,” in

Ottawa Linux Symposium (OLS), Ottawa, 2007.

[9] OpenStack, “Welcome to the Ceilometer developer documentation!,” [Online]. Available:

https://docs.openstack.org/ceilometer/latest/.

[10] SUSE OpenStack Cloud 7, OpenStack Administrator, Cambridge MA, USA: SUSE LLC, 2017.

[11] D. Chisnall, The Definitive Guide to the Xen Hypervisor, Upper Saddle River, NJ, USA: Prentice Hall

Press, 2007.

[12] S. Jin, VMware VI and vSphere SDK: Managing the VMware Infrastructure and vSphere, Upper Saddle

River, NJ, USA: Prentice Hall PTR, 2009.

[13] OpenStack, “Welcome to Nova’s developer documentation!,” [Online]. Available:

https://docs.openstack.org/nova/latest/.

[END OF DOCUMENT]

