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Terminology 

Term Definition 

DoS Denial of Service 

EOP Extended Operating Points 

HEI Hardware Exposure Interface 

KVM Kernel Virtual Machine 

MTBF Mean Time Between Failures 

MTTF Mean Time to Failure 

MTTR Mean Time to Recover 

PMD Processor Module 

QOS Quality of Service 

RAS Reliability, Availability, Scalability 

SDC Silent Data Corruption 

SLA Service Level Agreement 

SoC System-on-Chip 

TCO Total Cost of Ownership 

TDP Thermal Design Power 

VFS Voltage and Frequency Scaling 

VM Virtual Machine 
Table 1: Table of Terms 
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Executive Summary 

UniServer seeks to improve the performance and energy efficiency in servers by automatically discovering 

the capability of the underlying hardware components to function beyond nominal operating points. By taking 

advantage of the extended margins inherent in processors and memories, it is possible to improve the power 

efficiency of ARM-based micro-servers running in the cloud or edge. Understanding how to take advantage 

of these margins and successfully exploit them requires detailed metrics throughout the system stack. These 

metrics track and quantify operation at each system level, and are used to evaluate system and application 

behavior as compared to a conventional system that does not attempt to go beyond nominal operating 

points.  

This deliverable describes the metrics that will be used at various levels within the UniServer framework. 

Metrics are categorized into three levels: hardware, system and application. The metrics at the different 

layers are strongly related, with metrics at a particular level being associated with the metrics at the previous 

lower levels. 

At the hardware level the metrics are mainly related to the reliability of processor and DRAM components. 

The severity metric and long-term wear metric are proposed at this level. The severity metric takes into 

account the different types of errors that have been observed, including silent data corruption, correctable 

errors, uncorrectable errors, application crash/hang and system crash/hang. The long-term wear metric is 

related to the long-term effects on functionality and performance of the voltage and frequency scaling on the 

three components (DRAM, cache, and core). 

The system level metrics concern the Hypervisor and Open Stack, including metrics such as expected 

energy consumption and Service Level Agreement (SLA) violation penalties affecting the Total Cost of 

Ownership (TCO). 

Finally, application metrics are related to the corresponding SLA, which specifies the application’s quality of 

service (QoS) requirements such as processing/response latency, availability and result accuracy. The 

ultimate goal of UniServer is to meet these QoS requirements but at a reduced energy footprint and TCO 

compared to a system that does not attempt to exploit the extended margins of hardware components.  
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1. Introduction 

This document describes the initial report on the metrics that will be used to measure the success of 

UniServer, i.e., to evaluate the operation of the UniServer platform compared to a conventional system that 

does not attempt to operate beyond nominal (voltage and frequency) settings and memory refresh rates. The 

respective work is done as part of Task T7.5 “End-to-end TCO Analysis and Metrics of Success” under Work 

Package 7 (WP7 – “Cross-Layer Secure System Integration and Evaluation”), and depends on all other 

components of the system: the DRAM and Cache characterization from WP3, the HEI, StressLog and 

HealthLog developed in WP4, the Hypervisor enhancements in WP5, the OpenStack extensions discussed 

in WP6, and finally the applications themselves in WP7.  

From the perspective of a customer, that is an end-user or the application owner, the success of the 

UniServer approach depends ultimately on whether the application running on the server meets the Service 

Level Agreement (SLA) while running under the UniServer constraints. If the SLA is met, and the cost 

associated with the recovery mechanisms is low compared to the achieved energy savings and thus is 

acceptable under the Total Cost of Ownership (TCO), then the approach can be deemed a success. The 

purpose of an SLA is to define, in a concrete way, the kind and quality of service the customer should 

receive. SLAs do not define how the service itself is provided/delivered, thus the metrics that apply to the 

internal functioning of the UniServer platform are not in general directly visible to the customer, even though 

they can impact on the delivery of the service. 

Given this context and for convenience, in UniServer metrics of success are categorized into various levels, 

depending on that part of the system stack where the metric is used: hardware, system and application. 

Hardware is constantly monitored and metrics quantifying its operation are reported to the software level, 

which correlates the observed metric values with those of its own level. The metrics are subsequently used 

to take actions (e.g. move a VM from one host to another) and decide the operating margins, all based on 

the SLAs of the applications. 

The rest of this document is structured as follows. Section 2 gives an overview of the system structure and 

different layers of the UniServer system stack. Section 3 discusses the overall approach and categorization 

of the metrics in each level of the system. Section 4 describes the metrics for the hardware components. 

Section 5 discusses the Hypervisor and Open Stack (cloud) related metrics. Section 6 expands on the 

specific metrics for each of the three target applications that are being used to demonstrate the UniServer 

approach. Section 7 summarizes the conclusions. 
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2. System Overview 

The UniServer system can be logically divided into three parts: 

Level Description 

Hardware X-Gene2 based “Tigershark” systems or X-Gene3 

based “Osprey” systems 

System Software Linux OS, virtualization extensions such as 

KVM/Qemu, and OpenStack cloud infrastructure 

Application Applications running in the context of a VM 

Table 2: Uniserver levels 

In particular, starting from the low layers we develop techniques that aim at revealing new Extended 

Operating Points (EOP) for each hardware component based on the component’s true capabilities (which 

can be well beyond its nominal and typically quite conservative operating points). This is achieved by stress-

testing the hardware components during a pre-deployment phase under different points using various stress 

kernels. During deployment, the HealthLog daemon is monitoring the health status of the hardware under 

any used voltage/frequency/refresh rate (V-F-R) point and informs the system software (i.e. Hypervisor) by 

propagating information vectors about the performance, power, temperature, and any incurred errors.  

Moreover, another Linux daemon, the StressLog, is responsible for periodic offline, on-demand stress testing 

of the hardware components and for producing an output vector containing the new safe system V-F-R 

margins that will be suggested to the software (i.e. Hypervisor) for future usage. It also produces log files 

recording errors (correctable or uncorrectable), system configuration values, sensor readings and 

performance counters. Using the information provided by the HealthLog and StressLog, the Predictor 

develops probability failure models and tries to predict the hardware behavior under any operating point and 

eventually helping the system software to decide on the optimum configuration. 

 

Figure 1: Detailed Uniserver Layering 

The UniServer paradigm addresses a wide range of use cases, ranging from edge-based deployments in 

remote locations close to the end users to deployments in cloud data-centers. To facilitate such diverse use 
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cases, the UniServer platform must be equipped with a complete software stack that can efficiently manage 

compute and storage resources by offering easy installation, migration and replication of tasks, either at the 

node or server-rack level. To this end, state-of-the-art software packages for virtualization (Hypervisor) and 

resource management (OpenStack) are being adopted. Such packages, apart from managing the virtual 

machines (VMs) at the node level (Hypervisor) and the resources at a rack/data-center level (OpenStack), 

are also enhanced for optimizing the system operation by fine tuning the extended V-F-R points of the 

computing and storage resources, while at the same time tolerating and managing the increased failure rate 

due to operation beyond nominal points. 

In particular, the hypervisor aims at limiting the effects of the potential faults to higher software layers by 

reconfiguring the system to operate within safe margins and isolating problematic processing and memory 

resources that affect the VMs. This is achieved by utilizing the information delivered by the 

HealthLog/StressLog/Predictor daemons and developing a new set of configuration properties. The 

optimization of operations at the EOP in UniServer is guided by the system requirements of the end-user for 

each VM, which are typically communicated to the Cloud provider through Service Level Agreements (SLAs). 

These workload-specific requirements reflect the key metrics of interest based on which OpenStack 

manages the nodes of the cloud/data-centre. Note that in the UniServer paradigm an additional metric, 

namely node reliability, is added to the traditional metrics of interest which are node availability, utilization 

and energy usage. Altogether, these metrics will help in system energy and performance optimization.  

At the lowest level, the APM X-Gene processor family powers the system. As described in [31], the latest X-

Gene 3 processor that will be used as the final chassis of UniServer compares favourably to the current 

state-of-the-art with respect to its competitors. 

 APM X-Gene3 Intel Xeon E5-

2680v4 

Cavium ThunderX 

CP 

Intel Xeon D-1540 

CPU Core Potenza++ Broadwell Thunder Broadwell 

Max Sockets 1S 2S 2S 1S 

Cores, Threads 32C/32T 14C/28T 48C/48T 8C/16T 

Max Integer IPC 4 IPC 5 IPC 2 IPC 5 IPC 

Base Clock Speed 3.0 GHz 2.4 GHz 2.5 GHz 2.0 GHz 

Total Cache 32MB 35MB 16MB 12MB 

Memory Bandwidth 170.7GB/sec 76.8GB/sec 76.8GB/sec 32.1GB/sec 

Memory Capacity 1,024GB 1,536GB 512GB 128GB 

PCIe Bandwidth 82.8GB/sec 78.9GB/sec 31.5GB/sec 55.3GB/sec 

SPECint_rate >500 527 350 238 

Power (TDP) 125W 120W 95W 45W 

IC Process 16nm FF+ 14nm HYP 28nm HKMG 14nm HP 

Table 3: Processor comparison 

The X-Gene3 processor delivers a high per-thread performance peak as well as being power efficient [32]. 

The processor was designed with the data center in mind, with a full range of reliability, availability, and 

serviceability features. However, in the UniServer environment when subjected to intentional undervolting 

and frequency scaling, the processor may operate outside of its design parameters. This requires a number 

of trade-offs between operational correctness, power consumption, and performance. The metrics at each 

layer of the system help to track the tradeoffs, allowing the application to meet its targeted SLA.  
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3. Approach 

The goal of the UniServer project is to improve the energy efficiency of ARM-based micro-servers, for both 

edge and cloud computing deployments. Reducing the power envelope or extracting more work from the 

existing power envelope is a key concern in today’s environment [1]. By reducing the power consumption, 

edge-based computing infrastructures and data centers can reduce their TCO without compromising their 

service quality.  

3.1 Overview 

The primary aim of UniServer is to limit the pessimistic guardbands that are being adopted today in 

commercial servers to account for the expected performance degradation of transistors and potential 

functionality failures due to the increased transistor variability in nanometer technologies. While such 

guardbands (in terms of increased voltage margins and circuit redundancy) have successfully ensured 

reliable operation up to date, their effectiveness in detecting and correcting and accounting for all possible 

errors is being doubted by researchers, as geometries and supply voltages are being scaled down and 

circuits become more vulnerable to failures. 

As an example, the voltage guardbands (i.e. voltage up-scaling) currently adopted against a variety of issues 

are already significant, ranging from at least 5% for die-to-die variations to 20% for addressing voltage 

droops (as was also mentioned in D3.2). Indicatively, recent measurements in ARM processors indicated 

more than 30% timing and voltage margins in 28nm. Recent studies have also revealed that the refresh-rate 

adopted in dynamic memories (DRAMs) is extremely pessimistic, and can be relaxed beyond the 

conservative 64ms that is currently adopted in DDR3 technologies (see D3.3).  Such voltage, frequency and 

refresh-rate margins are becoming more prominent with the use of more cores per chip, the increased 

voltage droops, reliability issues at low voltages (Vmin), and core to core variations. 

The main target of UniServer is to limit such guardbands in commodity ARM based servers, thus allowing 

operation at reduced voltage and refresh-rate in CPUs and memories. This improves the energy efficiency, 

which is one of the primary concerns today due to the emergence of issues such as Dark Silicon. By limiting 

such guardbands the CPUs could also be operated at a higher frequency, thus allowing acceleration of 

program execution.  

However, by limiting or even eliminating those voltage, timing and refresh-rate guardbands we are putting at 

risk the correct functionality of the CPUs and DRAMs due to the potential failures that may occur at lower 

voltages and dynamically changing operating/environmental conditions (e.g., temperature). Such timing and 

memory failures may disrupt the operation of the server and/or directly affect the expected QoS, which can 

be quantified in terms of throughput and quality-of-results (e.g. in terms of Bit-Error-Rate). As a consequence 

such failures will affect the SLAs in terms of availability, latency, accuracy, and throughput as agreed at the 

higher level between the service user and the service provider.   

Therefore, in UniServer we are substantially enhancing all layers of the system stack with new capabilities 

for revealing the safe operating limits for each core and DIMM, while enhancing the Hypervisor and 

OpenStack layers for optimizing the energy end performance by managing the operation at the revealed 

operating limits while ensuring the desired availability, latency, accuracy, and throughput.  

3.2 Metrics 

Evaluating the success of UniServer requires the development of specialized metrics, since UniServer 

approaches scaling in an entirely new fashion as described above. Application metrics have traditionally 

been based around concepts such as defects counts, performance metrics such as throughput or latency, 

etc. While such metrics can be considered as successful given their popularity, their limitations are well 

known [29, 30]. Existing metrics do not accurately describe whether a system or component is “successful” 
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when subjected to intentional frequency changes and undervolting. For instance, using a metric such as 

performance would not take into consideration the savings in energy, but also the increased probability of 

errors, resulting from lowering margins. Thus, a more specific set of metrics that take into account these 

aspects must be established, such as the number of memory errors per time quanta, or the voltage threshold 

for undetected memory errors [2]. 

The metrics for UniServer can be divided as follows: 

Level Description 

Hardware Measure, track, and quantify the operating parameters 

of the processor and memory. 

System Software Based on the hardware metrics, adjust the deployment 

and operating parameters of the OS, Hypervisor, and 

Cloud deployment. 

Application The metrics related to each application that quantity the 

success or failure of execution such as availability, 

latency, accuracy, and throughput.  

Table 4: Levels of Metrics 

The rationale for the different layers is that the notion of “successful operation” is different at each layer. 

Because of UniServers exploitation of the operating margins of processors and memory, errors will occur. 

These errors are tracked and monitored, but do not necessarily cause a failure in the overall operation of the 

system. For example, an undetected memory error at the hardware layer would normally be cause for a 

system shutdown; however, if the upper layers have indicated their ability to tolerate such errors, then the 

operation of the system can continue. Alternatively, if an upper layer cannot tolerate such errors, it might 

decide to change the operating parameters of a lower layer, in an attempt to reduce the error rate and meet 

the expectations of the upper layers. 

Total Cost of Ownership (TCO) is a key optimization metric for the design of a system because it includes all 

the other metrics that will be investigated in the UniServer project. TCO can capture the implications of many 

parameters including performance, power and mean time to failure [33], [34]. More specifically TCO allows a 

quick exploration of the implications of reliability design decisions. On the contrary, the lack of a TCO model 

most likely leads to reliability techniques and design decisions with local scope, which consequently miss the 

global implications (such as cost and energy) of such decisions.  

The UniServer project will provide an end-to-end TCO tool. The end-to-end TCO, which is a new concept, 

aims to estimate the entire eco-system lifetime capital and operating expenses including the costs of data 

source nodes (i.e. IoT nodes), the servers used for edge and cloud nodes and the internet network latency. 

The tool will identify the potential benefits of a deployment that uses the UniServer framework as compared 

to one without it. The tool will also be capable of assessing the TCO of future large-scale deployments and 

will also help investigate cost-benefit analysis for alternative UniServer configurations.  

Such a tool will help to access the trade-offs between energy, throughput and the costs being paid for 

addressing any potential failures by operating at marginal voltage and refresh rate. For example, by reducing 

the voltage the failure probability will increase. Hardware ECC along with mechanisms at the Hypervisor and 

OpenStack such as VM or node restart will then need to be activated, which will cost energy and throughput. 

Considering such costs along with the energy savings under the different configurations and the various 

applications will help determine the preferred EOP under different conditions. 

To provide an example, the trade-offs of such an analysis can be seen in the following table in case of two 
different mitigation mechanisms. In terms of hardware ECC, ChipkillSC is the weaker ECC mechanism than 
ChipkillDC [33].  
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Table 5: Trade-off of two DRAM ECC mechanisms (ChipkillDC and ChipkillSC) [33] 

As the table shows, there are several trade-offs according to reliability, bandwidth, latency and power. So, it 
is not trivial to choose the appropriate ECC mechanism between the two. To accomplish this, an 
incorporation of all the parameters as well as the application characteristics in the TCO model is needed.  
 
The following figure shows the TCO of ChipkillDC and ChipkillSC when running two applications with 
different characteristics. The first application is the Web Search, a highly constrained application with strict 
QoS requirements and a working set size of 6GB. The second application, referred to as Floreon+, is a flood 
prediction application, and is compute intensive, multithreaded with high QoS constraints but a small working 
set (44KB). As can be seen, according to the TCO, a different ECC mechanism is preferable for each 
application: ChipkillDC for Web Search and ChipkillSC for Floreon+.  
 

 
Figure 2: Normalized TCO to ChipkillDC for WebSearch and Floreon+ applications [33] 

Similarly, trade-offs will be explored taking into account the three applications of the Uniserver project and 

also including some other parameters such as the network latency. At the end, we will decide in which 

location to run a specific application (edge or cloud) and also find the V-F-R that provides the maximum 

savings in the TCO. 

The success of the project ideas depends on showing energy end/or throughput improvements when the 
server is operated at the marginal V-F-R levels. A conceptual example of the trade-offs between energy 
savings and mitigation costs of the massive failures can be seen in the following figure. 
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This graph shows a “success” scenario with the correlation between the reduction of CPU, SoC and DRAM 

voltage (x-down axis), the probability to have a failure (y-left axis), application or system crash, and the 

energy (x-up axis) and TCO savings (y-right axis). The graph shows the savings in the TCO (y-right axis) as 

the voltage in different components is reduced. As the graph shows, the TCO savings are increasing and 

reach the 3.5% point related to the nominal voltage setting (first point of the voltage setting in the x-down 

axis). After that point, TCO savings are decreasing due to the higher probability of failure. Higher probability 

of failure causes more over-provisioning in order to not violate the availability requirement of an application.  

As the figure shows, even though energy savings are increasing monotonically, TCO does not have the 

same trend. This happens due to the extra cold spares that are needed due to the availability requirement 

violation of a specific application. Cold spares are server or component (DRAM, processor) modules needed 

for replacement when active servers or components fail. The fault rate of a server can be determined by the 

MTTF of its components and the Mean Time to Repair (MTTR). The cold spares are not active and they are 

only used when a server is down due to a failure. These spares are only accounted for in the TCO with their 

capital expenses and not their operational expenses (such as power). So, the point where the TCO savings 

are decreasing is the point that the cost of all the number of cold spares that are needed is overlapping the 

energy savings at a specific voltage setting.  

When adopting the Uniserver framework and reducing the CPU or/and SoC voltage or/and DRAM voltage 

while keeping a stable workload and CPU frequency, the probability of failure is moving closer to one, 

whereas energy savings are increasing. The lower the voltage, the less energy consumption; however, there 

may be more reliability issues. So, it depends also on the application requirements to find the best voltage 

setting in which to run the application.  

Each application has its own requirements related to performance, power and reliability/availability, as 

described in Section 6. TCO can encapsulate all the metrics such as reliability issues (pfail) and energy in 

each voltage setting and can show the best voltage setting in which to run a specific application.  

The above graph highlights the complexities of analyzing the TCO factors and the need for a TCO tool to find 

the best configuration to run an application. It also shows that the lack of such tool can lead to wrong choice 

of a voltage setting.  

 
Figure 3: Pfail, energy, and TCO estimation 
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3.3 Related State of the Art Work 

Recently, the goal for improving the energy efficiency of microprocessors by reducing their supply voltage 

has become a main concern of many scientific studies. Gopireddy et al. [19] presents a core that is designed 

for voltage scalability and that can work in high-performance mode at nominal Vdd, and in a very energy-

efficient mode at low Vdd. The authors evaluate their proposal in terms of energy consumption and energy-

delay product, which is the consumed energy multiplied with the delay between the input and the output. The 

authors assume that there are no uncorrectable errors and thus metrics taking into account the reliability are 

not considered.   

In order to help testing the effects of voltage droops, Ketkar et al. [21], and Kim et al. [22,23] propose testing 

frameworks to maximize voltage droops in single core and multicore chips in order to investigate their worst 

case behavior due to the generated voltage noise effects. These papers focus on reliably under realistic 

noises and worst-case scenarios, but do not study the effects of such generated noises and thus they do not 

propose metrics to evaluate such effects.  

Studies of Gupta et al. [24] and Reddi et al. [15] focus on the prediction of critical parts of benchmarks, in 

which large voltage noise glitches are likely to occur, leading to system malfunctions. By predicting these 

parts, the system can operate at tighter frequency and voltage margins, and adapt to a more conservative 

configuration whenever a potential error-prone part is executed. The notion of “error probability” is adopted in 

the UniServer project in order to determine the reliability of a system given a set of configuration parameters 

and workloads. Overall, we observe that although there is a large interest in developing energy efficient 

systems and also techniques to deal with voltage noise effectively under DVFS settings, there is little work 

on exploiting unreliable configurations that can tolerate a certain degree of errors. 

At the system software level, the studies in [7, 11] introduce models that involve several QoS metrics, used 
in the SLAs between the consumers and providers through a complete environment for cloud applications. 
The resulting models focus on maximizing the provider profit while taking into consideration SLA violation 
penalties. These works miss the opportunity of further extending the infrastructure provider profit by 
exploiting either VFS or voltage overscaling. UniServer adopts both voltage and frequency overscaling and 
proposes the respective models to estimate (and subsequently reduce) the cost to the cloud and edge 
operator. Moreover, UniServer can take into account the potential SLA violation penalties and highlight the 
optimal operating point (tradeoff between energy reduction and QoS) that increases operator profit. 
 
Dynamic voltage and frequency scaling (DVFS) in cloud deployments has the potential to reduce power. The 
authors in [12] adopt dynamic voltage scaling to minimize energy consumption on high-performance 
computing systems. The model described in [25] proposes techniques that lower the supply voltage below 
nominal values, but also introduces mechanisms that allow the system to recover from the resulting timing 
errors and return to a stable state. Both these works try to maximize the energy gains but do not consider the 
contractual QoS agreement (SLA) that the cloud/edge provider must adhere to. Eventually, due to timing 
errors, the profit of energy saving can be reduced by the SLA violation penalties, consumption and increase 
profit [10]. DeMarco [26] and separately Weinberg [27] have amplified this in the sense of software system 
as a product delivering value for the customer. Furthermore, ISO/IEC 20000, the international service 
management standard for IT systems, gives strong weight to the concept of the voice of the customer.  

During the last few years, datacenters have increased in numbers, size and uses [35]. In an effort to reduce 
costs and meet specific needs several configurations have come to market including micro-servers for I/O 
intensive workloads [39], [40] and blade-servers for space and power constrained environments. With these 
different systems comes a set of design decisions which affect the total cost of ownership. Consequently, to 
deliver a cost-efficient datacenter, designers should be aware of how different decisions affect the Total Cost 
of Ownership (TCO) of a datacenter. Several TCO models have been proposed for guiding datacenters 
design [33], [34], [36], [37] and [38] that mainly depend on the following factors:  
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TCO Type Description 

Datacenter Infrastructure Cost The cost of acquisition of the datacenter building 
(real estate and development of building) and the 
power distribution and cooling equipment 
acquisition cost 

Server Cost Expenses The cost of acquiring the servers, which 
depreciates within 3-4 years 

Intra-Datacenter Networking Equipment Cost The cost of acquiring the networking equipment 

Datacenter Operating Expenses The cost of electricity for servers, networking 
equipment and cooling 

Maintenance and Staff Expenses The cost for repairs and the salaries of the 
personnel 

Table 6: TCO factors 

While the goal of datacenter designers is to minimize the TCO, another major concern is the energy 
consumption and the resulting environmental substantial fraction of the TCO.  
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4. Hardware Metrics 

The foundations of the metric hierarchy are the metrics and parameters for components such as the CPU, 

caches, and DRAM. Through undervolting, frequency scaling, and altering the DIMM refresh rates, the 

operating parameters of the components are altered.  

4.1 Error Types 

The Hardware Exposure Interface (HEI) as described in D4.1 “Hardware Exposure Interface (HEI) and Error 

Handlers Specification” provides the ability to monitor the processor and notify other components of the 

system about the occurrence of an error. In the undervolting and frequency experiments [1, 2], several types 

of errors have been observed. 

Error Type Description 

Silent data corruption A “flip” of one of more bits without notification from the HEI, 

meaning the error was undetected by the processor. 

Correctable error A notification from the HEI that the processor has discovered 

and corrected an error. 

Uncorrectable error A notification from the HEI that the processor has discovered 

an error that cannot be corrected. Two bitflips in an ECC 

protected data word would be described an uncorrectable. 

Application crash/hang An application crash or hang with or without notification from 

the HEI about a processor detected error. 

System crash/hang A system crash or hang with or without notification from the 

HEI about a processor detected error. 

Table 7: Error types due to hardware malfunction 

4.2 Severity Function 

As a means to aggregate the criticality or severity of such errors while also taking into account how likely it is 

for them to occur, we introduce [2] the Severity Function Sv, where v is the voltage, as follows: 
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The parameters SDC, CE, UE, AC and SC denote the occurrence of SDC, CE, UE, AC and SC errors 

observed in N runs for the same voltage level V. Parameters WSDC, WCE, WUE, WAC and WSC represent 

“weights” that can be flexibly set to characterize the severity of each type of error.  

For each individual run, SDC, CE, UE, AC and SC take binary values, i.e., they can be either 1 (the 

respective error occurred, one or more times in this run) or 0 (such an error did not occur in this run). Note 

that more than one type of errors may occur in the same run, e.g., one can observe SDCs together with CEs 

or even UEs, in which case SDC and CE and CE would all be equal to 1. However, there are certain 

combinations that cannot occur, e.g., it is not possible in the same run to observe a crash (AC/SC) and an 

SDC. This is because SDCs are determined and logged only after running the application to completion.   

As mentioned above, the weights can be set in an open way to reflect the criticality/severity of such errors. 

For example, one can set WCE=1, WUE=2, WSDC=4, WAC=8 and WSC=16 (where CEs are considered far less 
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critical than SCs which are considered to be the most severe errors). Then, for a single run, Sv can take a 

value from 0 to 19, since the system can crash (SC=1) after having detected ad logged one or more 

correctable and uncorrectable errors (CE=1 and UE=1). Other runs can result in different values between 0 

and 19; but note that not all values are feasible, e.g., it is not possible for Sv to be 12 because it is not 

possible to experience both an AC and to detect/log an SDC.  

Aggregating over N runs, Sv gives the average of the individual single runs, reflecting the criticality/severity 

of these different types of types of errors while also taking into account the likelihood of their appearance 

when operating the system at voltage level V. If a particular type of behavior appears much more often than 

others, this will be reflected in the value of Sv. For example, assuming the weights given above, if when 

under-volting the system at 900mV for a large number of N the value of Sv is close to 5, this means that the 

program at this voltage level most likely leads to SDCs while also having some CEs at the same time 

(SDC/N ~=1 and CE/N ~=1, while UE/N ~=0 and AC/N ~=0 and SC/N ~=0). 

It is important to stress that both the error occurrences and weights can be strongly application-specific, 

leading to significantly different values for different applications. As example, when operating the system at 

900mV, and after performing a large number of runs N for two different applications Ax and Ay, one could get 

Sv(Ax) = 12.5 and Sv(Ay) = 4.5. What this effectively means is that Ay is much more tolerant to under-volting 

at 900mV compared to Ax. Notably, a similar observation can be made when comparing two different cores, 

say Cx and Cy, for the same application A. In this case, Sv(Cx) = 12.5 and Sv(Cy) = 4.5 would mean that 

core Cy is more robust to under-volting than core Cx when the system is running application A.  

The severity metric, its calculation, and the corresponding viruses are described in detail in D3.3, “First 

Analysis of On-Chip Caches and  ynamic Memories”, and in [2].  

4.3 Long-Term Wear 

One aspect of the UniServer approach that requires additional time to explore is the long-term effect of 

voltage and frequency scaling on the components. This level of investigation cannot be carried out until the 

parts have been stressed for a sufficiently long period of time. Upon the delivery of the latest X-Gene3 based 

systems, the existing X-Gene2 systems which are being used as the current chassis of the UniServer 

platform will be converted into long-term test beds. In that way, it will be possible to re-run the experiments to 

determine how aging affects the severity metric.  

4.4 Graceful Performance Degradation 

Performance can be affected due to disabling of resources that do not operate reliably due to aging or 

operating at small margins. It is useful, therefore, to assess the trade-off between performance and TCO of 

future servers supporting deconfiguration of processor resources such as cache sections to facilitate more 

energy efficient operation.  

To achieve this, all the characterization results for the CPUs and DRAMs under different configuration 

parameters will be fed to the developed TCO tool. The tool will also take into consideration any energy and 

performance penalty due to the recovery mechanisms (i.e. ECC, task and node restart) that may be needed 

due to the potentially increased detected error count when the node will be operating at scaled voltages and 

refresh rates. Finding the operating regions where the system SLAs can be met without any frequent 

disruptions and the energy savings due to scaled V-F-R are larger than the incurred fault mitigation costs will 

be a major target of the TCO tool. It will also be a predictor that will determine the success of the project 

ideas. Note that in order to achieve the above we must ensure that the system degrades gracefully, rather 

than abruptly, with massive failures due to the potentially increased failures under scaled V-F-R. This will 

help to keep the mitigation cost low and the error count controllable.     
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5. System Software Metrics 

The system software stack of the UniServer framework comprises the operating system, hypervisor and 

VM/Cloud management software (OpenStack). Since the system software stack must be able to handle the 

instability inherent in undervolting and frequency scaling, UniServer focuses on enhancing the hypervisor 

and OpenStack components to tolerate and even compensate for this instability. 

The relationship between the hypervisor and OpenStack is shown in the following diagram: 

 

Figure 4: Hypervisor and OpenStack relationship 

5.1 Hypervisor 

At the hypervisor layer, hardware metrics related mainly to power and performance (such as CPU and 

memory utilization, cache misses etc.) are already monitored by an existing application programming 

interface (API). In UniServer, we are enhancing this API to enable the collection and monitoring of 

information related to reliability. This is done through UniServer-specific daemons, which will be collecting all 

detected CPU and DRAM errors as described in D4.2 “HealthLog Specifications and Interface” and D4.3 

“StressLog Specifications and Interface”. 

The Hypervisor relies on the HealthLog and other components to track the current reliability and stability of 

the system. For example, if a core or set of cores is deemed unreliable, then key processes can be migrated 

to reliable cores. Memory can also be partitioned into reliable and unreliable domains. The hypervisor itself 

will be restricted to running on reliable cores, and allocating memory only from the reliable domain. 

The application and the operating environment inherently drive the metrics that will influence the choice of 

operating parameters. These metrics are described in detail in [1] and illustrate the relationship between 

expected energy consumption at the Hypervisor level and the SLA/TCO of OpenStack.  
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5.2 OpenStack 

OpenStack provides the framework for managing the Virtual Machines (VMs) and the underlying platforms 

they run on. WP6 aims at improving the management of virtual machines VMs that are running on nodes 

with heterogeneous power, and performance settings. This heterogeneity in power and performance adds an 

additional parameter, i.e. reliability, that should be incorporated in managing the running VMs. This requires 

developing techniques for improving the resilience of cloud infrastructure and the running workloads. The 

exposed extended margins are available to OpenStack through the libvirt [3] interfaces. The detailed 

enhancements and specialized resource management policies for OpenStack are described in D6.1: 

OpenStack support for UniServer.  

In the context of UniServer project, the following are the metrics of that can be used to evaluate the success 

of the cloud infrastructure in a data center:  

5.2.1 Energy Efficiency 

One of the objectives of the UniServer project is to improve the energy efficiency of the data centers.  To this 

end, the enhanced OpenStack for UniServer gathers fine grain resource utilization measurements of the 

workloads (i.e., VMs) running in the cloud data center, and resource utilization measurements of the physical 

resource of the data center. Based on the observed resource utilization measurements, OpenStack may ask 

the underlying system software stack, through the enhanced libvirt interface for UniServer, to adjust the 

voltage and frequency settings of the physical server which is hosting a particular VM such that the 

performance requirements of the running application are not violated. 

Therefore, one of the metrics of success is to see how much energy efficiency is achieved by the cloud 

service provider using the enhanced OpenStack for UniServer as compared to the standard DVFS settings, 

where the operating system governor is set to default ondemand setting. We also plan to compare the 

achieved energy efficiency with other governor settings, i.e., conservative, powersave, and performance, but 

we anticipate that switching to these settings may not be the correct choice because of the diverse nature of 

workloads running in a cloud datacenter. We expect to achieve more energy efficiency in UniServer using 

the enhanced system software and cloud middleware stack as compared to the standard DFVS settings. 

5.2.2 Proactive fault tolerance  

In order to meet the objectives of the UniServer project in terms of improving the availability of the running 

workloads in the face of system failures, techniques will be developed in the enhanced OpenStack for 

UniServer to proactively avoid failures. One of the metrics of success will be to see the effectiveness of the 

developed techniques and compare them with the ability of standard OpenStack in avoiding failures. In this 

context, we will consider those failures that may result in the unavailability or disruption of the running 

workload.  

The current state of the art OpenStack does not employ any specific technique to proactively avoid failures 

that may lead to the unavailability of the running workload. We plan to measure the number of failures that 

may be avoided using proactive fault tolerance techniques as compared to the total number of faults that are 

experienced by the system. The accuracy and the effectiveness of proactive fault tolerance techniques would 

be determined by the number of failures that are prevented by the enhanced OpenStack as compared to the 

standard OpenStack framework. 

5.2.3 Reactive fault tolerance  

UniServer aims at developing proactive techniques at the cloud middleware level to handle system-level 

failures. However, it is anticipated that not all failures would be handled by the proactive fault tolerance 

techniques. To handle those failures, the enhanced OpenStack for UniServer will employ reactive techniques 

to mitigate the impact of a failure and to make the workload available again as soon as possible, e.g., by 

restarting the workload on a different node. One of the metrics of success is to measure the effectiveness of 
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the reactive techniques, and to see how mean-time-to-recover (MTTR) a workload improves in the enhanced 

OpenStack as compared to the standard open-source OpenStack available to the cloud providers.  

A general technique used in the data centers to improve the availability of workloads during failures is to 

replicate the workload by running duplicate VMs; however, this approach may not be effective for UniServer 

where the aim is to not only improve the energy efficiency but also to reduce the total cost of ownership 

(TCO). Therefore, we can measure the effectiveness of the reactive fault tolerance technique without running 

replicated VMs, and then compare the MTTR of the enhanced versus vanilla OpenStack framework. 
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6. Application 

The metrics at the application level are the final arbiter of success or failure of the UniServer approach. 

There are three target applications, listed in the table below. 

Application Provider 

Wireless jamming detection WSE 

Trade confirmation Meritorious 

Social CRM and Social TV SPA 

Table 8: UniServer target applications 

These applications mostly share a common set of quality of service (QoS) metrics, which are in turn used to 

express the individual application requirements in the form of respective Service Level Agreements (SLAs): 

Metric Description 

Availability Percentage of uptime 

Latency Delay in providing results  

Accuracy Precision of output 

Throughput Data Rate, application specific. Not all 

applications need have a Data Rate metric 

Table 9: Application Metrics. 

Of course, each application has different QoS requirements, which depends on its nature. For instance, one 

application may have very high accuracy requirements but more relaxed availability requirements compared 

to another one. The QoS requirements of each of the UniServer applications are discussed in more detail in 

the following.  

6.1 WSE Wireless Jammer Detector 

The SDR Jammer Detector is a wireless security component of the Denial of Service (DoS) Sensing solution. 

The detector identifies jamming signal threats that aim to generate DoS attacks by interfering with wireless 

network communications. For this purpose, this solution implements a smart sensor that detects threats and 

communicates detection events to visualization software so that users can easily identify the type of jamming 

signal generating the attack. 

The following figure summarizes the overall architecture of the jamming detection solution 

 

Figure 5: DoS Sensing Architecture 

The Jammer Detector consists of a sensor that has an antenna connected to an SDR module, which 

digitalizes the radio spectrum to a binary stream and transmits this to a Processing Board (running the 
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Jammer Detector application). The board processes the incoming data and applies filters and algorithms to 

match the signals found to 4 types of well-known jamming signals. If one of those is detected, this incidence 

is communicated to the Monitoring Server, running on a separate machine. Finally, the Visualization tool 

periodically gets detection events from the Monitoring Server so that it can present them in real time. 

The QoS requirements of the Jammer Detector are summarized in the table below, and are described in 

more detail in the following subsections. 

 

Metric Description 

Latency Each decision in 100ms 

Availability High: 99%. Moderate: 75%. Low: 50% 

Accuracy 97%; 3 undetected SDCs in 100 

decisions 

Table 10: WSE jammer detector metrics 

6.1.1 Availability 

Availability depends on the type of installation where the solution is deployed. There are cases where the 

availability will be high, moderate or low. 

High availability: Some of the use cases will demand that detection is available 99% of the time. It is 

important to emphasize that a jamming attack should be held through time in order to be effective and really 

compromise the proper behavior of a wireless network. Thus, the attack is considered a threat if it 

continuously detected for at least 5 seconds. If the solution is not available for 5 seconds every 500 or 600 

seconds (10 minutes), this is acceptable, as a worst case scenario will give us a 10 second interval to detect 

a threat. Thus, the maximum time that the solution can afford to be unavailable is 5 seconds. In this case, the 

application can afford 1% unavailability. One of the use cases where this type of solution is needed will be a 

hospital, for example. 

Moderate availability: There are cases, such as smart construction monitoring, where the availability can be 

lower due to the criticality of data and the amount of data transferred, which would be a few bytes per hour or 

less. In this case, the reliable transmission of packets is important, but it is not critical if a few of them are 

lost. In this type of scenario, a 75% availability can be accepted. Actually, in a smarter solution, the jammer 

detector would only be needed if the system detects that there is packet loss, which should be quite 

infrequent. 

Low availability: In cases where connections are not critical or there are not many connections to monitor 

but the solution may still be interesting, only 50% availability or even less could be an option. This would be 

the case in shopping malls or train stations, where the connections would be performed by clients trying to 

access the network for non-critical purposes, such as recreational activities. 

6.1.2 Latency 

It is important that jamming detection is fast, i.e., for the application to have a relatively small latency. The 

latency will always depend on the width of the band that the application is analyzing. The maximum latency 

that has been experienced on a regular processing board was 100ms to make a decision (jammer present or 

not) on a 5 MHz band. Thus, the time needed to analyze the whole WiFi band (2.4 GHz to 2.5 GHz) is about 

2 seconds. Clearly, if the processing board is powerful enough, this latency can be lowered but this will result 

in a more expensive solution. 
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6.1.3 Accuracy 

The accuracy requirement varies depending on the conditions where the jammer detector is used, the power 

of the jammers used for the attacks, etc. In case the environment is very noisy and there are several other 

signals being transferred on the analyzed band, detection accuracy will decrease. For this, there are several 

parameters that need to be adjusted to the environment where the detector will be installed. 

The calculated accuracy is obtained through simulation where the environment is friendly and the noise is 

controlled. In this case, the false positive or true negative rates are almost 3%, giving a best case scenario of 

97% accuracy. 

6.2 Meritorious Trade Confirmation 

European Markets Infrastructure Regulation (EMIR) came into force on 16 August 2012, and introduced 

requirements aimed at improving the transparency of Over-The-Counter (OTC) derivatives markets and to 

reduce the risks associated with those markets. In order to achieve this, EMIR requires that OTC derivatives 

meeting certain requirements be subject to the clearing obligation and for all OTC derivatives that are not 

centrally cleared that risk mitigation techniques apply. In addition, all derivatives transactions need to be 

reported to Trading Repositories (TRs).  

The reporting of a derivative transaction involves any daily modifications/updates of the transaction until the 

termination of the derivative contract. This requires the processing and validation of a large amount of 

information and handling sensitive client’s data.  

 

Figure 6: Trade confirmation architecture 

The goal is to reduce the TCO via UniServer, which also includes power reduction. In this application, there 

is no difference if the cost comes from capital cost, operational cost, or maintenance.  
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CME ETR: Chicago Mercantile Exchange EMIR Trade Repository 
REGIS-TR: Iberclear and Clearstream European Trade Repository 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32012R0648:EN:NOT
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The QoS requirements of the Meritorious trade confirmation application are summarized in the table below: 

Metric Description 

Latency 3000 transactions/min 

Availability 99% 

Accuracy 100% 

Table 11: Meritorius trade confirmation metrics 

Trades must be reported on the day T+1 deadline. That is not related to the market close but when the trade 

was executed on any market. By execution, what is meant is the time a transaction request by an investor 

was accepted by the Investment Firm (the client). For example, any transactions executed from 00:00:00 to 

23:59:59 on 04/07/2017 (day T) must be reported by the end of the next day that is 23:59:59 of 05/07/2017 

(day T+1). Trades are coming from markets from all over the world and thus can be trades executed any 

time of the day on working days. 

6.3 SPA: SocialCRM/SocialTV 

The two SPA apps (Social CRM and Social TV) share the same three architectural components: 

1. The social network server component which runs on a large data center  

2. The social analytics components that run on client's premises and which process data from the 

server regarding specific subscribed events 

3. The web app, which also runs on client's premises and that connects to a database with the results 

of the social analytics component to allow their exploration 

The QoS requirements of each component are discussed next. 

6.3.1 The social network server component 

The social network server uses synthetically generated data, which simulates a real social network in time. 

This dataset is bulk loaded into the server to set it into a working state, and spans several years of social 

network activity. Additionally, the synthetic datasets also contain "update" streams, which basically consist of 

the update activity in the social network (new messages, new friends, etc.) in the subsequent months in the 

simulation that have not been bulk loaded, but are fed into the driver which is responsible for issuing these 

updates at runtime. Also, parameters are provided to the driver to perform read queries.  

At the beginning of the execution and before starting issuing queries, the driver creates a workload of 

operations. In other words, it creates a mix of read and update queries given the information provided by the 

dataset (update streams + parameters), where each query has an associated "issue time". That is, if 

execution starts at point t, each query has an associated timestamp with value t+i, which corresponds to that 

time this query will be issued by the driver to the server in the future. This time t+i is different for each query.  

Last but not least, queries have dependencies. For instance, if at some point a user A is added to the social 

network, we cannot add a friendship between A and another user B until the server confirms that user A 

information has been committed into the database. The driver creates a pool of worker threads. Each thread 

picks the next query to execute in the timeline if and only if its dependencies have been resolved already and 

the issue time of the queries is equal or greater than the current time. This process continues until all queries 

have been executed. 
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In an ideal situation, the driver will execute the queries at their corresponding issue time. This can be seen 

as users issuing queries at different moments in time, and getting the answers correctly. But what if the 

server starts lagging at some point (queries are taking too much to execute)? That means that at some point, 

some queries will be delayed from their issue time. Thus, each query will have an "actual issue time", which 

is the time this query was actually picked by a worker thread and issued to the server given the performance 

provided by the server.  

Since the social network server is meant to be interactive, the benchmark defines a minimum SLA in order to 

consider an execution valid. This SLA is defined as follows: For >95% of the queries, (actual issue time - 

issue time) <= 2000 ms. In other words, if this SLA is achieved, the server is assumed to be capable of 

correctly serving the workload. Additionally, the driver reports the latency per query time. Although the 

benchmark does not define a minimum latency for each query, we are free to do so. For instance, we could 

extend the SLA to also require each query type to have a 95% percentile of latency below 1 second.  

Metric Description 

Latency <= 2 seconds 

Availability 99,9999% 

Accuracy 100% 

Throughput 95% queries <= 2 seconds from their 

issue time. Queries/second fixed by the 

scale factor used 

Table 12 - Social Network Server SLA metrics 

All the SLA metrics of the Social Network Server component are automatically measured and reported by the 

LDBC Social Network Benchmark Driver. 

6.3.2 The social analytics component 

The analytics component, which is installed in client's premises, receives periodic batches of updates on 

those specific events tracked. For instance, imagine a client A wants to track the activity related to Donald 

Trump. The social network server will buffer this activity and from time to time or when a buffer is filled it will 

send that to the client (the social analytics component). From time to time, the client will process the data 

and combine (or not) with the previous data, and update its snapshot of information with the most recent data 

received from the server. The type of processing is like finding influencers, detecting communities, etc. 

Ideally, the client would like to have always the most up-to-date data pre-processed and available for 

interactive inspection by the webapp. However, this might not be feasible depending on the cost of the 

analysis, which in turn depends on the amount of data to process. But many applications do not require the 

most recent data but can work with delays that can go from hours to a few days.  

Under these circumstances we have the opportunity to heavily exploit the TCO. The user should know the 

relation between the costs at different configurations and how fast (and thus recent) the analysis is, and let 

him choose the best option for her (also considering the rate the data from the server is arriving). 

Note that for this component, the server does not require a high availability; it just must guarantee that the 

data will be processed and can be retrieved by the web app when this is available. The web app can be in 

another server, which will just retrieve (copy) the latest database and replace the previous one. In other 

words, the server could be in suspended mode 90% of the time if this fits the needs of the user. 
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Metric Description 

Latency N/A 

Availability The time required to perform the 

computation. Flexible, depends on the TCO.  

Accuracy Flexible, depends on the TCO 

Throughput 1 execution per 24h 

Table 13 - SLA for the Social Analytics Component 

In order to measure the SLA of the Social Analytics Component, we will track the execution time and see if it 

meets the 24 hour deadline required by the application. 

6.3.3 The web app component 

For the web app, we must guarantee that this is interactive and available. This is similar to the social network 

server. We could measure the latency of the requests and the user experience. Assuming a workday of 8 

hours, an SLA of 99% would guarantee a non-availability of at most 5 minutes per day. This seems 

reasonable.  

Metric Description 

Latency <=2 seconds 

Availability 99%  

Accuracy 100% 

Throughput 10 queries / second 

Table 14: SLA for the Web App 

The SLA of the Web App will be measured by means of well-known tools such as jmeter 

(jmeter.apache.org), which allows testing web applications and assess their responsivity and throughput. 

.  
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7. Conclusions and Future Work 

This deliverable has described the metrics used by UniServer at the hardware, system, and application 

levels in the initial period. The detailed description of each metric has been provided, as well as how the 

metrics are used at each level. The relationships between the levels in the system have been explained, as 

well as the interactions between levels. The importance of the metrics with respect to application deployment 

and TCO has been addressed with specific references to three different applications. 

Future work will focus on fine-tuning the interactions between the layers in the system, and on the 

development and deployment of the end-to-end TCO tool with the main aim of discovering the optimum V-F-

R points where the obtained energy savings are larger than the incurred correction/recovery costs due to the 

potentially increased errors. To achieve this, the work in all layers of the UniServer framework, conducted in 

the individual WPs (WP3-WP6), focuses on discovering operating regions where performance scales 

gracefully and massive failures are avoided. Note that the metrics explained in this report are the ones that 

have been set in the initial period and they will be updated if needed in the future deliverables.  

With the deployment of the upcoming X-Gene3 based systems, the existing X-Gene2 systems can focus on 

the effects of long-term wear and graceful degradation of resources. Lastly, the security implications of 

operating outside the processor margins will be also explored trying to safeguard the UniServer platform 

against any threats that may become possible due to operation at reduced V-F-R. 
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