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Executive Summary 
This document is a part of the Task T3.3 “Analysis of caches and dynamic memories” as presented in the 
Description of Action (DoA) of the UniServer project under Work Package 3 (WP3 – “Analysis and 
Enhancement of Hardware Substrate Outside Nominal Conditions”). This task uses the X-Gene 2 board as a 
target platform described in the Task 3.1 “Definition and enhancement of the target platform” and contributes 
to two objectives: (a) analysis of error behaviour for the processor cores and on-chip caches under various 
voltage and frequency settings and stress conditions, and (b) analysis of DRAM error behaviour operating 
under scaled refresh rates and supply voltage and various temperature conditions. 
 
This deliverable focuses on the presentation of developed tools and methodologies to analyse error 
behaviour for the on-chip caches and dynamic memories of the target platform (X-Gene 2) operating  under 
off-nominal Voltage/Frequency/Refresh rate (VFR) conditions. Making an extension to the characterization 
study discussed in D3.3, we identify workload-dependent parameters that affect reliability of the system 
operating under off-nominal conditions which can be exploited to build a failure prediction model (the task 
T4.4). The outcomes of this report are going to be used: 

• To develop dedicated programs to stress the system operating under Voltage/Frequency/Refresh 
rate (VFR) conditions. These programs can be synthetic stress tests (“diagnostic virus”) for the 
cores, the on-chip caches and DRAM as presented in T3.2 and T3.3 of WP3 respectively and real 
application kernels as presented in D4.4 “Benchmark Suite for StressLog” which is a part of the task 
T4.3 in WP4. 

• To provide valuable directions for building of the prediction model being developed in T4.4 and to be 
presented in D4.8.  
 

                   

1. Introduction 
UniServer targets to improve performance and energy efficiency in cloud systems by utilizing the pessimistic 
Voltage/Frequency/Refresh rate (VFR) margins conventionally adopted by hardware vendors. However, 
system operation under off-nominal conditions increases the population of manifested errors compared to 
the operation under nominal conditions. Changing the supply voltage, frequency or the DRAM refresh rate 
may induce errors in different parts of the chip, i.e. within cores and memory subsystem. In depth 
characterization and analysis of system’s behavior under nominal and scaled VFR conditions is of major 
importance to finally provide a reliable, high performance and energy efficient system.  
 
The insights that were revealed by this characterization step are valuable for many tasks and work packages 
of the UniServer project. They have guided decisions concerning the development of dedicated programs to 
stress the entire system in its operation limits under off-nominal VFR conditions. Moreover, the output of 
running all these stress programs under off-nominal conditions will feed the D4.8, with all the necessary 
insights about the failure model of caches and DRAM. The predictor module integrated with OS will be able 
to identify the best combination of VFR values in order to ensure the efficient operation of the system in 
terms of performance, energy and reliability (as presented in T4.4).  
 
The goal of this deliverable is to present the results of the characterization for the on-chip cache memories of 
different levels, as well as off-chip DRAM when operating beyond the nominal conditions in the X-Gene 2 
platform, extending the findings of the D3.3. The features of the targeted platform were described in detail in 
deliverable D3.1 “Definition of the UniServer Board”. Concerning the cores and the on-chip caches, a 
versatile automated framework was developed for system-level voltage and frequency scaling 
characterization of the Applied Micro’s X-Gene 2 micro-server family as was described in detail in D3.3. In 
summary, the framework provides fine-grained information about the system’s state by monitoring any 
abnormal behavior that may occur during under-scaled supply voltage and frequency conditions. In our 
preliminary results using our framework presented in D3.3, we observed significant variations when we scale 
the voltage and frequency running the same workload on different cores or running different workloads on 
the same core. We also discussed all the related work in the literature concerning the characterization of the 
caches and the impact of voltage noise in systems that operate under-off nominal voltage conditions. To 
extend our finding in this deliverable, we present the results of the characterization on the X-Gene 2 server 
with two new studies. In the first study, we use dedicated micro-viruses programs for fast characterization of 
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X-Gene 2 to reveal its safe operation margins, while in the second study we illustrate a statistical analysis 
study to predict the safe operation voltage margins for each core of the chip. 
 
Concerning the characterization of Dynamic Random-Access Memory (DRAM), we extend the experimental 
framework on X-Gene 2 with a thermal testbed for conducting experiments under controlled DRAM  
temperature. This allows us to understand DRAM behavior under the temperature conditions which may vary 
in Cloud, but most importantly in Edge environments. In this deliverable, we analyze the number of 
manifested errors and correlate how different data and access patterns affect the error rate when DRAM 
operates under lowered supply voltage and relaxed refresh rates. 
 
 
 
 
The document is organized in the following sections: 
 
 
Section 2 presents the on-chip caches characterization. Using the characterization framework described 
in detail in D3.3, we present two new studies concerning the efficient development of cache and pipeline 
micro-viruses and a statistical analysis study that aims to predict the safe voltage operation limits of the 
ARMv8 cores under off-nominal voltage and frequency conditions. 

 
 
Section 3 presents the characterization of dynamic memories: It presents the efforts of creating the 
experimental setups utilized during this period. Then the section presents the results of characterization for 
applications with different data sizes and frequency accesses patterns and the techniques used to correlate 
the number of errors for DRAM operating at the lowered supply voltage and relaxed refresh rates with 
parameters of the system. Continuing, this section introduces a thermal framework to control the DRAM 
temperature in order to understand the effects of data and frequency patterns. Lastly, we draw some 
conclusions and observations across our experiments 
 
Finally, conclusions are drawn in Section4: It summarizes new contributions reported in this deliverable 
and discusses future work.     
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2. On-Chip Caches Characterization 
The characterization results that were presented in D3.3 revealed important core-to-core, benchmark-to-
benchmark and chip-to-chip variations. To further extend the characterization results that were presented in 
D3.3, in this deliverable we firstly illustrate the results of the characterization when three different chips (that 
were provided to UoA, UCY and QUB partners) operate in scaled voltage and refresh rate conditions, while 
they run the WSE DoSSensing application (Jammer Detector). Moreover, in this section we present two 
studies related to the characterization process of the X-Gene 2. The first study presents the development of 
micro-viruses that target all the levels of caches memory hierarchy (L1 Data and Instruction cache, unified L2 
cache and L3 cache) as long as the pipeline, the ALUs and the FPUs of the ARMv8 cores of the X-Gene 2 
chip in order to evaluate fast the safe operation limits of the chip. In the second study, we present a statistical 
analysis methodology to predict the safe voltage operation margins of the ARMv8 cores using as input the 
results from the characterization phase and the performance counters of the benchmarks during their entire 
execution. 
 
2.1.  Characterization of the WSE DoSSensing – Jammer Detector 

To characterize the Jammer Detector that is described in detail in D7.4 “Evaluation of the Prototype and 
Comparison to State-of-the-Art in terms of Energy, Security and Determined Metrics of Success”, we used 
the framework described in detail in this deliverable that gives us the opportunity to change the PMD 
Voltage, the SoC Voltage, the DRAM Voltage and the DRAM refresh rate of the X-Gene 2 chips. Apart from 
the errors, the SDCs and the Crashes we also extended the framework in order to check the QoS 
requirements of the application. 
 
To ensure the statistical significance of the delivered results, we launched 100 iterations of the 
characterization campaign in order to detect the safe operations margins. Moreover, we repeated the 
characterization experiments of the application in three different TTT chips of the three partners that are 
involved in the characterization of the X-Gene 2 (UoA, UCY, QUB). 
 
We separated the characterization of the Jammer Detector in four different steps: 

• Identification of the safe operation margins when we reduce the voltage of the PMDs. 
• Identification of the safe operation margins when we reduce the voltage of the SoC. 
• Identification of the safe operation margins when we reduce the voltage and we increase the refresh 

rate of the DRAM. 
• Combination of the identified operation margins from the three previous steps concerning the PMDs 

and the DRAM in order to measure the maximum power savings for the 100 iterations.  
 

For all the aforementioned steps, we ensure the correct operation and the QoS of the application. After 
identifying all the safe margins concerning the PMDs and the DRAM we measured the power savings in off-
nominal conditions compared to the power that is consumed using the nominal values. 
 
Table 1 presents the nominal values and the safe operations limits (best cases observed for 100 iterations of 
the experiment) that were identified for all the parameters and the three chips that were used for the 
evaluation of the Jammer Detector application. 
 

Table 1: Safe operating limits for each of the chip (best cases for 100 iterations). 

Parameter Nominal UoA chip UCY 
chip 

QUB 
chip 

Vmin – PMD 980 mV 930 mV 910 mV 930 mV 
Vmin – SoC	 950 mV	 920 mV	 870 mV	 900 mV	

Vmin – DRAM	 1500 mV	 1428 mV	 1428 mV	 1428 mV	
Refresh Rate min – DRAM	 64 ms	 2279 ms	 2279 ms	 2279 ms	
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Figure 1 illustrates the average power savings that were measured for the chip located in UoA for 100 
iterations of the experiments. We can observe 20.2% power savings in total compared to the nominal values. 
 

 
Figure 1: Average power savings for 100 iterations of the experiment in UoA chip. 

 
Figure 2 presents the total power savings that were measured for the chip located in QUB. We can observe 
12.3% power savings in total. 
 

 
Figure 2:Average power savings for 100 iterations of the experiment in QUB chip. 

 

Finally, Figure 3 illustrates the total power savings that were measured for the chip located in UCY. We can 
observe 12.5% power savings in total. 
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Figure 3: Average power savings for 100 iterations of the experiment in UCY chip. 

 
2.2.  Cache and Pipeline Micro-viruses 

We developed diagnostic micro-viruses [1]  to stress individually the fundamental microprocessor units 
(caches, ALU, FPU) that define the safe voltage margins of the micro-processor. We don’t aim to reveal the 
absolute Vmin (which can be identified by worst-case voltage noise stress programs) since in X-Gene 2 
there is no direct way for on-chip voltage noise measurements. However, we provide strong evidence (IPC 
and power measurements) that the micro-viruses are stressing the chips more intensively than the SPEC 
programs.  
 
For the construction of the diagnostic micro-viruses we followed two different principles for the tests that 
target the caches and the pipeline, respectively. All diagnostic micro-viruses for the cases are small self-
checking pieces of code. This means that the micro-viruses check if a read value is the expected one or not. 
There are previous studies for the construction of such tests, but they focus only on error detection (mainly 
for soft errors), and to our knowledge this is the first work that is performed in actual microprocessor chips; 
not in simulators or RTL level, which have no interference with the operating system and the challenges that 
it provides. We first present a brief overview of the challenges for the development of such system-level 
micro-viruses in a real hardware and the decisions we made in order to develop accurate self-checking tests 
for the caches and the pipeline.  
 
Caches: For all levels of caches the first goal of the developed micro-viruses is to flip all the bits of each 
cache block from zero to one and vice versa. When the cache array is completely filled with the desired data, 
the micro-virus read iteratively all the cache blocks while the chip operates in reduced voltage conditions and 
identifies any corruptions of the written values, which cannot be detected by detection mechanisms of the 
cache, such as the parity protection that can detect only odd number of flips.  
 
All caches in X-Gene 2 have pseudo-LRU replacement policy. All our micro-viruses focusing on any cache 
level need to “warm-up” the cache before the test begins, by iteratively accessing the desired data in order to 
ensure that all the ways of the cache are completely filled and accessed with the micro-viruses’ desired 
patterns. We experimentally observed through the performance monitoring counters that the safe number of 
iterations that “warm-up” the cache with the desired data, before the checking phase begins, is log2(# of 
ways) to guarantee that the cache is filled only with the data of the diagnostic micro-virus.  
 
In order to validate the entire cache array, it is important to perform write/read operations in all of the bit cells. 
For every single case, we allocate a memory chunk equal to the targeted cache size. As the storing of data is 
performed in cache block granularity, we need to make sure that our data storage is block-aligned, otherwise 
we will encounter undesirable block replacements that will not guarantee the complete utilization of the 
cache array. Assume for example that the first word of the physical frame will be placed at the middle of the 
cache block. This means that when the micro-virus fills the cache, practically, there will be half-block size 
words that will replace a desired previously fetched block in the cache. Thus, if the cache blocks are N, the 
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blocks that are written in cache will be N+1 (meaning one cache block will get replaced), and thus, the self-
checking property may be jeopardized. To this end, for all cache-related micro-viruses we perform a check at 
the beginning of the test to guarantee that the allocated array is cache aligned (to be block aligned 
afterwards). Another factor that has to be considered in order to achieve full coverage of the cache array, is 
the cache coloring. Unless the memory is a fully associative one (which is not the case of the ARMv8 
microprocessors), every store operation is indexed at one cache block depending on its address. For 
physically indexed memories, the physical address of the datum or instruction is used. However, because 
the physical addresses are not known or accessible from the software layer, special precautions need to be 
taken in order to avoid unnecessary replacements. To address this issue, we exploit a technique that is used 
to improve cache performance, known as cache coloring. If the indexing range of the memory is larger than 
the virtual page, 2 addresses with the same offset on different virtual pages are likely to conflict on the same 
cache block (due to the size of L1 caches (32KB), the bits that index the cache occur in page offset, and 
thus, there is no conflict; this is the case for L2 and L3 caches in our system). To avoid this situation, the 
indexing range is separated in regions equal to the page size, known as colors. It is then enough to use 
equal number of pages in each color to avoid conflicts. The easiest way to achieve this, is to allocate 
contiguous physical address range, which is possible at the kernel level using the kmalloc() call. The 
contiguous physical range will guarantee that all the data will be placed and fully occupy the cache, without 
replacements or unoccupied blocks. 
  
Another challenge that the micro-viruses need to take into consideration is the interference of the branch 
predictors and the cache prefetchers. In our micro-viruses, the branch prediction mechanism (in particular 
the branch mispredictions that can flush the entire pipeline) may ruin the self-checking property of the micro-
virus, by replacing or invalidating the necessary data or instruction patterns. Moreover, prefetching requests 
can modify the pre-defined access patterns of the micro-virus’ execution. To eliminate these effects, the 
memory access patterns of the micro-viruses are modelled using the stride based model for each of the 
static load and stores of the micro-virus. Each of the static load and store in the workload walk a bounded 
array of memory references with a constant stride, greater than the X-Gene 2’s prefetcher stride. In that way, 
the cache-related micro-viruses are executed without the interference of the branch predictor or the 
prefetcher. We validated this by leveraging the performance counters that measure the prefetch requests for 
L1 and L2 cache and the mispredictions, and no micro-virus counts any event in the related counters.  
 
Pipeline: For the pipeline, we developed dedicated benchmarks that stress: (i) the Floating-Point Unit (FPU), 
(ii) the integer Arithmetic Logical Units (ALUs) and (iii) the entire pipeline using a combination of loads, 
stores, branches, arithmetic and floating-point unit operations. The goal is to trigger the critical paths that 
could possibly lead to an error during off-nominal operation voltage conditions. 
  
Generally, for all micro-viruses, one primary thing that we need to take into consideration, is that due to the 
fact that micro-viruses are executed in the real hardware, with operating system, we need to isolate all the 
system’s tasks to a single core. Assume for example that we run the L1 data or instruction micro-virus in 
Core 0. Each core has its own L1 cache, so we isolate all the system processes and interrupts in the Core 7, 
and we assign the micro-virus to Core 0. To do this we use the sched_setaffinity() call of the Linux kernel to 
set the process’ affinity. In such a way, we ensure that only the micro-virus is executed in the desired core 
each time. We follow the same concept for all micro-viruses, except for L3 cache, because L3 is shared 
among all cores, so a small noise from the system processes is unavoidable. 
  
We developed all diagnostic micro-viruses in C language (except for L1 Instruction cache micro-virus, which 
is ISA-dependent and is developed with a mix of C and ARMv8 assembly instructions). Moreover, the micro-
viruses (except for L1 instruction cache’s) check the microprocessor’s parameters (cache size, # of cache 
ways, existence of prefetcher or not, page size, etc.) and adjust the micro-viruses code to the specific CPU. 
This way, the micro-viruses can be executed in any microarchitecture and can easily adapted to different 
ISAs. Note that the set of micro-viruses will be publically available. 
 
Next, we discuss the implementation details of the micro-viruses for all cache levels (L1 Data Cache, L1 
Instruction Cache, Unified L2 Cache, L3 Cache), the pipeline, the ALU and the FPU. 

2.2.1. L1 Data Cache 

For the first level data cache of each core, we allocated statically an array in memory with the same size as 
the L1 data cache. As the L1 data cache is no-write allocate, after the first write of the desired pattern in all 
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the words of the structure we need to read them first, in order to bring all the blocks in the first level of data 
cache. Otherwise, the blocks would remain in the L2 cache and we would have only write misses in the L2 
cache. Moreover, due to the pseudo-LRU policy that is used in the L1 data cache, we read all the words of 
the cache three consecutive times (log2(# of ways) = log28=3) before the test begins, in order to ensure that 
all the blocks with the desired patterns are allocated in the first level data cache. With these steps, we 
achieve 100% read hit in the L1 data cache during the execution of the L1D micro-virus in undervolting 
conditions. The L1 Data micro-virus fills the L1 Data cache with three different patterns, each of which 
corresponds to a different micro-virus test. These tests are the all-zeros, the all-ones, and the checkerboard 
pattern. To enable the self-checking property of the micro-virus (correctness of execution is determined by 
the micro-virus itself and not externally), we check if each fetched word is equal to the expected value (the 
one stored before the test begins) at the end of the test.  

2.2.2. L1 Instruction Cache 

The concept behind the L1 Instruction Cache micro-virus is to flip all the bits of the instruction encoding in the 
cache block from zero to one and vice versa. In the ARMv8 ISA there is no single pair of instructions that can 
be employed to invert all 32 bits of an instruction word in the cache, so to achieve this we had to employ 
multiple instructions. The instructions listed in Table 2 are able to flip all the bits in the instruction cache from 
0 to 1 and vice versa according to the Instruction Encoding Section of the ARMv8 manual.  
 
Each cache block of the L1 instruction cache is able to hold 16 instructions because each instruction is 32-bit 
in ARMv8 and the L1 Instruction cache block size is 64 bytes. The size of each way of the L1 Instruction 
Cache is 32KB / 8 = 4KB, and thus, it is equal to the page size which is 4KB. As a result, there should be no 
conflict misses when accessing a code segment (see cache coloring previously mentioned) with size equal 
to the L1 Instruction cache (the same argument holds also for the L1 Data Cache). 
  
The method we guarantee the self-checking property in the L1 Instruction cache micro-virus is the following: 
The L1 instruction cache array holds 8192 words (64 sets x 8 ways x 8 words in each cache block = 8192). 
We use 8177 words to hold the instructions of our diagnostic micro-virus, and the remaining 15 instructions 
(8177 + 15 = 8192) to compose the control logic of the self-checking property and the loop control. More 
specifically, we execute iteratively 8177 instructions and at the end of this block of code we expect the 
destination registers to hold a specific “signature” (the signature is the same for each iteration of the same 
group of instructions, but different among different executed instructions). If this “signature” is distorted then 
the micro-virus detects that an error occurred (for instance a bit flip in an immediate instruction resulted in the 
addition of a different value) and records the location of the faulty instruction as well as the expected and the 
faulty signature for further diagnosis. We iterate this code multiple times and after that we continue with the 
next block of code. 
 
As in the L1 Data cache micro-virus, due to the pseudo-LRU policy that is used also in the L1 Instruction 
cache, we fetch all the instructions three consecutive times (log2(# of ways) = log28=3) before the test 
begins, in order to ensure that all the blocks with the desired instruction patterns are allocated in the L1 
instruction cache. With these steps, we achieve 100% read hit in the cache (and thus cache stressing) during 
the undervolting campaign.  
 

Table 2: ARMv8 Instructions used in the L1 Instruction micro-virus. The right column presents the encoding of 
each instruction in bit granularity to demonstrate that all the bits in the cache block get flipped. 

Instruction Encoding 
add x28, x28, #0x1 1001 0001 00 0000 0000 0001 11100 11100 
sub x3, x3, #0xffe 1101 0001 00 1111 1111 1110 00011 00011 

madd x28, x28, x27, x27 1001 1011 00 0110 1101 1011 11100 11100 
add x28, x28, x27, asr #2 1000 1011 10 0110 1100 0010 11100 11100 
add w28, w28,w27,lsr #2 0000 1011 01 0110 1100 0010 11100 11100 

nop 1101 0101 00 0000 1100 1000 00000 11111 

bics x28, x28, x27 1110 1010 00 1110 1100 0000 11100 11100 
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2.2.3. Unified L2 Cache 

The L2 cache is a 32-way associative PIPT cache with 128 sets; thus, the bits of the physical address that 
determine the block placement in the L2 cache are bits [12:6] (as shown in Figure 4). Moreover, the page 
size we rely on is 4KB and consequently the page offset consists of the 12 less significant bits of the physical 
address. Accordingly, the most significant bit (bit 12) of the set index (the dotted square in Figure 4) is not a 
part of the page offset. If this bit is equal to 1, then the block is placed in any set of the upper half of the 
cache, and in the same manner, if this bit is equal to 0, the block is placed in a set of the lower half of the 
cache. Bits [11:6] which are part of page/frame offset determine all the available sets for each individual half. 
  
In order to guarantee the maximum block coverage (meaning to completely fill the L2 cache array), and thus 
to fully stress the cache array, the L2 micro-virus should not depend on the MMU translations that may result 
in increased conflict misses. The way to achieve this is by allocating memory that is not only virtually 
contiguous (as with the standard C memory allocation functions used in user space), but also physically 
contiguous by using the kmalloc() function (see cache coloring previously mentioned). The kmalloc() function 
operates similarly to that of user-space's familiar memory allocation functions, with the main difference that 
the region of physical memory allocated by kmalloc() is physically contiguous. This guarantees that in one 
half of the allocated physical pages, the most significant bits of their set index are equal to one and the other 
half are equal to zero. 
  
Given that the replacement policy of the L2 cache is also pseudo-LRU, the L2 micro-virus needs to iteratively 
access five times the allocated data array (log2(# of ways) = log232=5), to ensure that all the ways of each 
set contain the correct pattern. Furthermore, due to the fact that the L1 data cache has write-through policy 
and the L2 cache has write allocate policy, the stored data will reside in the L2 cache right after the initial 
writes (there are no write backs). Another requirement for the L2 micro-virus is that it should access the data 
only from the L2 cache during the test and not from the L1 data cache, to completely stress the former one. 
We satisfy this requirement by using a stride access scheme for the array with a block stride of one block (8 
words stride). Therefore, in the first iteration the L2 micro-virus accesses the first word of each block, in the 
second iteration it accesses the second word of each block, and so on. Thus, it always misses the L1 Data 
cache. By accessing the data using these strides, the L2 micro-virus also overcomes the prefetching 
requests. Note that the L1 instruction cache can completely hold all the L2 diagnostic micro-virus 
instructions, so the L2 cache holds only the data of our test. 
  
To verify the above, we isolated all the system processes by forcing them to run in different cores from the 
one that executes the L2 diagnostic micro-virus, by setting the system processes’ CPU affinity and interrupts 
to a different core, and we measured the L1 and L2 accesses and misses after we have already “trained” the 
pseudo-LRU with the initial accesses. We measure these micro-architectural events by leveraging the built-in 
performance counters. The performance counters show that the L2 diagnostic micro-virus always misses the 
L1 Data cache and always hits the L1 Instruction cache, and it hits the L2 cache in the majority of accesses. 
Specifically, the L2 cache has 4096 blocks and the maximum number of block misses we observed was 32 
at most for each execution of the test (meaning 99.2% coverage). In such a way, we verify that the L2 micro-
virus completely fills the L2 cache. The L2 micro-virus fills the L2 cache with three different patterns, each of 
which corresponds to a different micro-virus test. These tests are the all-zeros, the all-ones, and the 
checkerboard pattern. To enable the self-checking property into this micro-virus, at the end of the test we 
check if each fetched word is equal to the expected value (the one stored before the test begins).  
 

 
 

Figure 4: A 256KB 32-way set associative L2 cache. 
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2.2.4. L3 Cache 

The L3 cache is a 32-way associative PIPT cache with 4096 sets and is organized in 32 banks; so, each 
bank has 128 sets and 32 ways. Moreover, the bits of the physical address that determine the block 
placement in the L3 cache are the bits [12:6] (for choosing the set in a particular bank) and the bits [19:15] 
for choosing the correct bank. Based on the above, in order to fill the L3 cache we allocate physically 
contiguous memory with kmalloc(). However, kmalloc() has an upper limit of 128 KB in older Linux kernels 
and 4MB in newer kernels (like the one we are using; we use CentOS 7.3 with Linux kernel 4.3). This upper 
limit is a function of the page size and the number of buddy system freelists (MAX_ORDER). The 
workaround to this problem is to allocate two arrays with two calls to kmalloc() and each array’s size should 
be half the size of the 8M L3 cache. The reason that this workaround will result in full block coverage in the 
L3 cache is that 4MB chunks of physically contiguous memory gives us contiguously the 22 less significant 
bits, while we need contiguously only the 20 less significant (for the set index and the bank index). Moreover, 
we should highlight that the L3 cache behaves as a non-inclusive victim cache. In response to an L2 cache 
miss from one of the PMDs, agents forward data directly to the L2 cache of the requestor, bypassing the L3 
cache. Afterwards, if the corresponding fill replaces a block in the L2 cache, a write-back request is issued, 
and the evicted block is allocated into the L3 cache. On a request that hits the L3 cache, the L3 cache 
forwards the data and invalidates its copy, freeing up space for future evictions. Since data may be 
forwarded directly from any L2 cache, without passing through the L3 cache, the behavior of the L3 cache 
increases the effective caching capacity in the system. 
  
Due to the pseudo-LRU policy, as in the L2, the L3 micro-virus is designed accordingly to perform five 
sequential writes (log2(# of ways) = log232=5) to cover all the ways before the test begins, and the read 
operations afterwards are performed by stride of 1 block (to bypass the L2 cache and the prefetcher, so the 
micro-virus only hits the L3 cache and always misses the L1 and L2 caches). The L3 diagnostic micro-virus 
fills the L3 cache with three different patterns, each of which corresponds to a different micro-virus test. 
These tests are the all-zeros, the all-ones, and the checkerboard pattern. To enable the self-checking 
property, at the end of the test we check if each fetched word is equal to the expected value (the one stored 
before the test begins). 
  
However, in contrast to the L2 diagnostic micro-virus, in the L3 micro-virus we do not have the necessary 
tools to prove the complete coverage of the L3 cache due to the fact that there are no built-in performance 
counters in X-Gene 2 that report the L3 accesses and misses. However, by using the events that correspond 
to the L1 and L2 accesses, misses and write backs we check that all the requests from the L3 micro-virus 
miss the L1 and L2 caches, and thus only hit the L3 cache. Finally, we should highlight that the shared 
nature of the L3 cache forced us to try to minimize the number of the running daemons in the system in order 
to reduce the noise in the L3 cache from their access to it.  

2.2.5. ALU 

X-Gene 2 features a 4-wide out-of-order superscalar microarchitecture. It has one integer scheduler and two 
different integer pipelines: a Simple Integer pipeline, and a Simple+Complex Integer pipeline. The integer 
scheduler can issue two integer operations per cycle; each of the other schedulers can issue one operation 
per cycle (the integer scheduler can issue 2 simple integer operations per cycles; for instance, 2 additions, or 
1 simple and 1 complex integer operation; for instance, 1 multiplication and 1 addition). 
  
The execution units are fully pipelined for all operations, including multiplications and multiply-add 
instructions. ALU operations are single-cycle. The fetch stage can bring up to 16 instructions (same size as a 
cache block) per cycle. The fetch attempts to always bring up to 16 instructions from the same cache block 
or by two adjacent cache blocks. If the fetch begins in the middle of a cache block (unaligned), the next 
cache block will also be fetched in order to have 16 instructions available for further processing, and thus 
there will be a block replacement on the Instruction Buffer. To this end, we use NOP instructions to ensure 
that the first instruction of the execution block is block aligned, so that the whole cache block is located to the 
instruction buffer each time. For the above microarchitecture, we developed the ALU self-testing micro-virus, 
which avoids data and control hazards and iterates 1000 times over a block of 16 instructions (that resides in 
the Instruction buffer, and thus the L1 instruction and data cache are not involved in the stress testing 
process). After completing 1000 iterations, it checks the value of the registers involved in the calculations by 
comparing them with the expected values. After reinitializing the values of the registers, we repeat the same 
test 70M times, which is approximately 60 seconds of total execution (of course, the number of executions 
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and the overall time can be adjusted). Therefore, we execute code that resides in the instruction buffer for 
1000 iterations of our loop and then we execute code that resides in 1 block of the cache after the end of 
these 1000 iterations. Because the instructions are issued and categorized in groups of 4 (X-Gene 2 issues 
4 instructions), and the integer scheduler can issue 2 of them per cycle we can’t achieve the theoretical 
optimal IPC of 4 Instructions per Cycle only with Integer Operations. Furthermore, we try to have in each 
group of 4 instructions, instructions that stress all the units of all the issue queues like the adder, the shifter 
and multiplier. Specifically, the ALU micro-virus consists of 94% integer operations and 6% branches.  

2.2.6. FPU 

Aiming to heavily stress and diagnose the FPU, we perform a mix of diverse floating-point operations, by 
avoiding data hazards (thus stalls) among the instructions and using different inputs to test as many bits and 
combinations as possible. To implement the self-checking property of the micro-virus, we execute the 
floating-point operations twice, with the same input registers and different result registers. If the destination 
registers of these two same operations have different result, our self-test notifies that an error occurred 
during the computations. For every iteration, the values of the registers (for all of the FPU operations) are 
increased by a non-fixed stride that is based on the calculations that take place. The values in the registers 
of each loop are distinct between them and between every loop. Moreover, we ensure that the first 
instruction of the execution block is cache aligned (as in the ALU micro-virus), so the whole cache block is 
located to the instruction buffer each time.  

2.2.7. Pipeline 

Apart from the dedicated benchmarks that stress independently the ALU and the FPU, we have also 
constructed a micro-virus to stresses simultaneously all the issue queues of the pipeline. Between two 
consecutive “heavy” (high activity) floating-point instructions of the FPU test (like the consecutive multply 
add, or the fsqrt which follows the fdiv) we add a small iteration over 24 array elements of an integer array 
and a floating-point array. To this end, during these iterations, the “costly” instructions such as multiply add 
have more than enough cycles to calculate their result, while at the same time we perform load, store, 
integer multiplication, exclusive or, subtractions and branches. All instructions and data of this micro-virus 
are located in L1 cache in order to fetch them at the same cycle to avoid high cache access latency. As a 
result, the “pipeline” micro-virus has a great variety of instructions which stress in parallel all integer and FP 
units. This micro-virus consists of 65% integer operations and 23.1% floating point operations, while the rest 
11.9% are branches. 

2.2.8. Micro-viruses validation 

In the previous section, we described the challenges and our solutions to the complex development process 
of the micro-viruses and how we verified their coverage using the machine performance monitoring counters. 
However, it is essential to validate the stress and utilization of the micro-viruses on the microprocessor. To 
this end, we measure the IPC and power consumption for both micro-viruses and SPEC CPU2006 bench- 
marks. Note that the micro-viruses were neither developed to provide power measurements nor performance 
measurements. We present the IPC and power consumption measurements of the micro-viruses only to 
verify that they sufficiently stress the targeted units. IPC and power consumption along with the data 
footprints of the micro-viruses (complete coverage of the caches bit arrays) are highly accurate indicators of 
the activity and utilization of a workload on a microprocessor. Figure 5 and Figure 6 present the IPC and 
power consumption measurements, respectively, for both the micro-viruses and the SPEC CPU2006 
benchmarks. 
  
As shown in these figures, the proposed micro-viruses for fast voltage margins identification provide very 
high IPC compared to most SPEC benchmarks on the target X-Gene 2 CPU. In addition, we assessed the 
power consumption using the dedicated power sensors of the X-Gene 2 microprocessor (located in standby 
power domain), to take accurate results for each workload. We performed measurements for two different 
voltage values; at the nominal voltage (980mV) and at 920mV, which is a voltage step that all of the micro-
viruses and benchmarks can be reliably executed (without Silent Data Corruptions (SDCs), errors or 
crashes). Figure 6 shows that the maximum and average power consumption of the micro-viruses are 
comparable to the SPEC CPU2006. In the same figure, we can also see the differences concerning the 
energy efficiency when operating below nominal voltage conditions, and this can strengthen the need for 
identifying the pessimistic voltage margins of a microprocessor. As we can see, in the multi-core execution 
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we can achieve 12.6% energy savings (considering that the maximum TDP of X-Gene 2 is 35W), by 
reducing the voltage 6.2% below nominal, where all of the three chips operate reliably.  

 
Figure 5: IPC measurements for both micro-viruses (top) and SPEC CPU2006 benchmarks (bottom). 

 

 
Figure 6: Power consumption measurements for both the micro-viruses and the SPEC CPU2006 benchmarks. 
The graphs at the top show the power consumption at nominal voltage (980 mV), when running on one core 

(left) and on all 8 cores concurrently (right). The bottom graphs show the power measurements when the 
microprocessor operates at 920mV, in order to present the energy efficiency when operating below nominal 

voltage conditions. 

2.2.9. Experimental Evaluation 

For the evaluation of the micro-viruses’ ability to reveal the Vmin of X-Gene 2 CPU chips and their cores, we 
used three different chips: TTT, TFF, and TSS from the AppliedMicro’s (APM) X-Gene 2 micro-server family. 
 
Using the I2C controller we decrease the voltage of the domains of the PMDs and the SoC at 5mV steps, 
until the lowest voltage point (safe Vmin) before the occurrence of any error (corrected and uncorrected – 
reported by the hardware ECC), SDC (Silent Data Corruption – output mismatch) or Crash. Due to the non-
deterministic behavior of a real machine (all of our experiments were performed on the actual X-Gene 2 
chip), we repeat each experiment 10 times and we select the execution with the highest safe Vmin (the 
worst-case scenario) to compare with the micro-viruses.  
 
We experimentally obtained also the safe Vmin values of the 12 SPEC CPU2006 benchmarks on the three 
X-Gene 2 chips (TTT, TFF, TSS), running the entire time-consuming undervolting experiment 10 times for 
each benchmark. These experiments were performed during a period of 2 months on a single X-Gene 2 
machine. We also ran our diagnostic micro-viruses, with the same setup for the 3 different chips, as for the 
SPEC CPU2006 benchmarks. This part of our study focuses on:  
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1. the quantitative analysis of the safe Vmin for three significantly different chips of the same 

architecture to expose the potential guard-bands of each chip,  
2. the demonstration of the value of our diagnostic micro-viruses which can stress the individual 

components, and reveal virtually the same voltage guardbands compared to benchmarks.  
 
The voltage guardband for each program (benchmark or micro-virus) is defined as the safest voltage margin 
between the nominal voltage of the microprocessor and its safe Vmin (where no ECC errors or any other 
abnormal behavior occur).  
 
As we discussed earlier, to expose these voltage margins among cores in the same chip and among the 
three different chips by using the 12 SPEC CPU2006 benchmarks, we needed ~2 months for each chip. On 
the contrary, the same experimentation by using the micro-viruses needs ~3 days, which can expose the 
corresponding safe Vmin for each core. In Figure 7 and Figure 8 we notice that the micro-viruses provide the 
same or higher Vmin than the benchmarks for 19 of the 24 cores (3 chips times 8 cores). There are a few 
cases that benchmarks have higher Vmin in 5 cores (the difference between them is at most 5mV – 0.5%) 
but in orders of magnitude shorter time. Such differences (5mV or even higher) can occur even among 
consecutive runs of the same program, in the same voltage due to the non-deterministic behavior of the 
actual hardware chip. This is why we run the benchmarks 10 times and present only the maximum safest 
Vmin. For a significant number of programs (benchmarks and micro-viruses), we can see variations among 
different cores and different chips. Figure 7 and Figure 8 represent the maxi-mum safe Vmin for each core 
and chip among all the benchmarks (blue line) and all micro-viruses (orange line). Considering that the 
nominal voltage in PMD voltage domain (where these experiments are executed) is 980mV, we can observe 
that the Vmin values of the micro-viruses are very close to the corresponding safe Vmin provided by 
benchmarks, but in most cases higher. The core-to-core and chip-to-chip relative variation among the three 
chips are also revealed with the micro-viruses. Both the SPEC CPU2006 benchmarks and the micro-viruses 
provide similar observations for core-to-core and chip- to-chip variation. For instance, in TTT and TFF chip, 
cores 4 and 5 are the most robust cores. This property holds in the majority of programs but can be revealed 
by the micro-viruses in several orders of magnitude shorter characterization time. 
 
At the bottom-right diagram of Figure 8, we show the undervolting campaign in the SoC voltage domain 
(which is the focus of the L3 cache micro-virus). In X-Gene 2 there are 2 different voltage domains: the PMD 
and the SoC. The SoC voltage domain includes the L3 cache. Therefore, this figure presents the comparison 
of the L3 diagnostic micro-virus with the 12 SPEC CPU 2006 benchmarks that were executed simultaneously 
in all 8 cores (8 copies of the same benchmark) by reducing the voltage only in the SoC voltage domain. In 
this figure, we also notice that in TTT/TFF the difference of Vmin between the benchmark with the maxi- 
mum Vmin and the self-test is 5mV, while in TSS the micro-viruses reveal the Vmin at 20mV higher than the 
benchmarks. Note that the nominal voltage for the SoC domain is 950mV.  
 

 

Figure 7: Detailed comparison of Vmin between the 12 SPEC CPU2006 benchmarks and micro-viruses for the TSS chip. 
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By using the proposed micro-viruses, we can detect very accurately (divergences have short range, at most 
5mV) the safe voltage margins for each chip and core, instead of running time-consuming benchmarks. 
According to our experimental study, the micro-viruses reveal higher Vmin (meaning lower voltage margin) in 
the majority of cores in the three chips we used. Specifically, 19 out of 24 in total cores, the micro-viruses 
expose higher or the same safe Vmin compared to the SPEC CPU2006 benchmarks. For the specific 
ARMv8 design, we point and discuss the core-to-core and chip-to-chip variation, which are important to 
reduce the power consumption of the microprocessor.  
 
Core-to-Core Variation: There are significant divergences among the cores due to process variation. 
Process variation can affect transistor dimensions (length, width, oxide thick- ness etc.) which have direct 
impact on the threshold voltage of a MOS device, and thus, on the guard-band of each core. We 
demonstrate that although micro-viruses can reveal similar divergences as the benchmarks among the 
different cores and chips, however, in most of the cases, micro-viruses expose lower divergences among 
cores in contrast to time consuming SPEC CPU2006 benchmarks. As shown in Figure 7, our micro-viruses 
reveal higher safe Vmin for all the cores than the benchmarks, and also, we notice that the workload-to- 
workload differences are very high (up to 30mV). Therefore, due to the diversity of code execution of 
benchmarks, it is difficult to choose one benchmark that provides the highest Vmin. Different benchmarks 
provide significantly different Vmin at different cores in different chips. Therefore, it is necessary excessively 
large number of different benchmarks to have a safe result concerning the voltage margins identification. 
Thanks to micro-viruses, which fully stress the fundamental units of the microprocessor, cores’ guard-bands 
can be safely determined (regarding the safe Vmin) at a very short time, and guide energy efficiency when 
running typical applications.  
 
Chip-to-Chip Variation: As Figure 8 presents for the TTT and TFF chips, PMD 2 (cores 4 and 5) is the most 
robust PMD for all three chips (can tolerate up to 3.6% more undervolting compared to the most sensitive 
cores). We can notice that (on average among all cores of the same chip) the TFF chip has lower Vmin 
points than the TTT chip, in contrast to TSS, which has higher Vmin points than the other two chips, and 
thus, can deliver smaller power savings.  
Diagnosis: By using the diagnostic micro-viruses we can also determine if and where an error or a silent 
data corruption (SDC) occurred. Through this component-focused stress process we have observed the 
following:  

1. SDCs occur when the pipeline gets stressed (ALU, FPU and Pipeline tests), and  

Figure 8: Maximum Vmin among 12 SPEC CPU2z06 benchmarks and the proposed micro-viruses for TTT, TSS 
and TFF in PMD domain. Rightmost at bottom shown the maximum Vmin of 12 SPEC CPU2006 benchmarks and 
the proposed L3 micro-virus in SoC domain. 
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2. the cache bit-cells operate safely at higher voltages (the caches tests crash lower than the ALU and 
FPU tests).  

Both observations show that the X-Gene 2 is more susceptible to timing-path failures than to SRAM array 
failures [2]. Previous studies on Intel Itanium have shown a large region of voltage values that contains only 
ECC corrected errors during undervolting. By reducing the voltage on those chips, the number of ECC 
corrected errors increases gradually for quite many voltage steps until it exposes the first abnormal behavior 
(SDC/crash). Unlike these studies, a major finding of our analysis using the micro-viruses for ARMv8-
compliant multicore CPUs is that SDCs (derived from pipeline stressing using the ALU, FPU and Pipeline 
micro-viruses) appear at higher voltage levels than corrected errors when cache arrays get stressed by 
cache-related micro-viruses. We believe that the reason is that unlike other server-based CPUs (like 
Itanium), X-Gene 2 does not deploy circuit-level techniques (Itanium performs continuous clock-path de-
skewing during dynamic operation [3]), and thereby, when the pipeline gets stressed, X-Gene 2 produces 
SDCs due to timing-path failures  
 
2.3.  Statistical Analysis based on Characterization Results 

To understand the behavior of the X-Gene 2 chip, we used the output from the characterization phase in a 
statistical analysis scheme [4]. Statistical analysis methods are appealing to predict the safe operational 
margins at the system level as they do not induce area overheads and they can be applied during 
manufacturing or after the chips’ release to the market. Thus, we launched a comprehensive statistical 
analysis of the behavior of ARMv8 64-bit cores that are part of the enterprise 8-core X-Gene 2 micro-server 
family when they operate in scaled voltage conditions. Our prediction schemes that use real hardware 
counters as input are based on linear regression models with several feature selection techniques that aim to 
predict the safe voltage margins of any given workload when the cores operate in scaled conditions. Our 
findings show that the power savings of operation above the safe Vmin can be up to 17.52% compared to 
operation at nominal voltage or up to 20.28% when we use a more aggressive scheme that targets the 
Severity metric (operation in unsafe regions beyond Vmin).  
 
For our analysis, we used the linear regression model that can be easily calculated on hardware in contrast 
to the more complex non-linear models, as it is able to provide high accuracy with relatively small population 
of independent variables. The regression techniques calculate a function to predict a value of the dependent 
variable from a set of independent variables that are called features. Assuming a set of x1, x2, x3, …, xN 
independent variables and y the dependent variable, our analysis is based on the Ordinary Least Squares 
(OLS) model that calculates a set of weights β (one for each variable x) and an error term e, according to the 
formula: 
 

𝑦" = 𝛽% + 𝛽'𝑥'"	+	𝛽*𝑥*"	 + ⋯ 	+	𝛽,𝑥,"	 + 	𝑒"																			(1) 
 
In eq. (1), yi is the ith response value (i.e. Vmin or Severity), xji is the jth feature (e.g. hardware counter values) 
evaluated at the ith observation, and ei is the ith statistical error. The goal of the model is to deliver the optimal 
values of the coefficients β1, β2, β3, ..., βk so as to minimize the sum of the squares of the differences 
between the predicted and the observed responses of the test dataset. 
 
We used as inputs for our models the output from the characterization phase (Vmin and Severity values) and 
the performance counters from the entire execution of the workloads in nominal voltage conditions using the 
perf tool. For the implementation of all our models, we used the sklearn python libraries [5].  
 
The X-Gene 2 provides 101 hardware counters that report all the major events concerning the memory 
hierarchy (accesses and misses in all cache levels, TLB and page walks levels, prefetches, etc.), the core 
pipeline (flushes, mispredictions, etc.) and the system (bus accesses, etc.). Before training the linear 
regression model and in order to eliminate and select the most appropriate counters for it, we used three 
different feature selection techniques: 
 
1) F_regression: This approach is based on F-distribution and computes the correlation of each 

independent feature X[:, i] with the dependent variable y, according to the following formula: 
 

𝜌" =
𝑋 : , 𝑖 	− 	𝑚𝑒𝑎𝑛 𝑋 : , 𝑖 	 ∗ 	 (𝑦	 − 𝑚𝑒𝑎𝑛(𝑦))

𝑠𝑡𝑑 𝑋 : , 𝑖 	 ∗ 	𝑠𝑡𝑑(𝑦)
						(2) 
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Then, for each feature, the F-value is computed according to eq. (3), where n is the population of y value. 
Finally, using the F-value, the associated p-value of each feature is determined [6].  

 

𝐹" =
𝜌"*

1 −	𝜌"*
	∗ (𝑛 − 1)																										(3) 

 
Subsequently, the F-values and p-values of all features are sorted and finally, the best k features with the 
best values are selected and used as input from the linear regression model. Note that the lower the p-
value and the higher the F-value, the more efficient the model becomes when we include this feature in 
the model. 

 
2) Recursive Feature Elimination (RFE): The goal of RFE is to select features by recursively considering 

smaller and smaller sets of features. First, the estimator is trained on the initial set of features, and weights 
are assigned to them according to their correlation coefficient. Then, the least important features are 
pruned from the current set of features and new weights are assigned to the remaining features. This 
procedure is recursively repeated on the pruned set until the desired number of features is reached.  

 
3) Polynomial Feature Transformation (Polynomial): To evaluate the correlation between two or more 

features, we implemented polynomial feature transformation that generates a new feature matrix 
consisting of all polynomial combinations of the features with degree less than or equal to a specified 
degree. For example, if an input sample of features is two-dimensional and consists of two features [x1, 
x2], the new polynomial feature matrix of degree-2 will be [1, x1, x2, x1

2, x1x2, x2
2]. In this study, we 

implemented the polynomial feature transformation for all the cases targeting either the Vmin or the 
Severity with a degree of correlation equal to 2. Our experiments revealed that a degree greater than 2 
cannot provide better accuracy to our prediction models. After this transformation, we use either 
f_regression or RFE feature selection to select the best features for our linear regression models. 

 
The evaluation of our models’ accuracy targeting either the Vmin or the Severity, was done by: (a) using the 
coefficient of determination (R2) that assesses how well a model explains and predicts the future outcomes; 
also, it is indicative of the level of explained variability in the dataset. The larger the values of R2, the better fit 
the model provides, while the best fit exists when R2 is equal to 1, (b) using the Root Mean Square Error 
(RMSE) that represents the deviation between the predicted and the observed values (the smaller the RMSE 
the more accurate the model is), (c) comparing our models with the baseline (naïve) model, which is the 
average of the target values (Vmin or Severity) of the training dataset. 
 
Depending on the target parameter (Vmin or Severity), we use different samples that correspond to 
information vectors of the values of the dependent and the independent variables that were used to train and 
test the models. All our training samples come from the characterization phase, in which we gradually reduce 
the voltage of the chip in 5 mV steps and capture the dynamic events and the system state; in this way, our 
models take into account the effects of voltage droops. All the independent variables of the samples used to 
predict the Vmin consist of the performance counters from the entire execution of the workloads that were 
normalized per kilo committed architectural instructions, while for the Severity they also include the voltage 
values of each voltage reduction step. To avoid biasing the results, all the collected values of each 
performance counter were normalized according to their minimum and maximum values, getting a final value 
with range [0, 1].  
 
For all the experiments, we split the samples into 80% training and 20% test datasets, while we also cross-
validated our models with different combinations of train and test datasets coming from different workloads to 
detect overfitting (8000K combinations for each experiment). The total population of samples that were used 
to predict the Vmin and the Severity is 320 and 800 respectively. 
 

2.3.1. Experimental Results 

We implemented our linear regression models with the three different feature selection algorithms targeting 
both the Vmin and the Severity in the eight cores of the TTT X-Gene 2 chip running all the workloads from 
SPEC CPU2006 suite with all their inputs (40 programs in total). In this section, we present only the most 
representative and interesting cases of our analysis on the most robust (Core 4) and the most sensitive 
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(Core 0) cores. For all the cases, we evaluate the accuracy when we select from one up to ten most 
important features to feed our linear model. Note that the addition of more features in the model does not 
necessarily imply increase in the final accuracy due to the overfitting phenomenon when the model becomes 
tailored to fit the random noise of the sample rather than reflecting the overall population. Finally, for the 
population of features with the highest accuracy (the lowest RMSE), we present the final prediction model 
equations according to equation (1).  
 
Predicting Vmin of the Most Sensitive Core 
 
In Figure 9, we illustrate the accuracy results (in terms of RMSE measured in mV) of all our models when we 
target the Vmin of the most sensitive core. The black dotted line presents the accuracy of the baseline (naïve) 
model which is the average values of the training dataset for prediction, while each set of bars represents the 
accuracy of the different models by using different population of selected features for the prediction. By using 
more than 4 features, all the methods are less accurate than the baseline model. Moreover, the linear 
regression model that uses only RFE is less accurate compared to the baseline model for all the cases. The 
linear regression that is accompanied by polynomial transformation with f_regression and up to 4 selected 
features gives better accuracy than the other methods for all the cases. The best accuracy (RMSE equal to 
5.0108mV) was observed by using the polynomial transformation with f_regression selection and only 4 
selected polynomial features. Table 3 presents the final prediction model according to equation (1). 
Moreover, the R2 that was measured for this prediction model is high (close to 0.75) indicating a good fit of 
the model. 
 
Our model finally delivers very high accuracy compared to the real values of our experiments (with only 5mV 
inaccuracy that corresponds to a single voltage reduction step supported by the machine). The potential 
power savings of using this scenario of prediction and adding a very small guardband of only 5mV (equal to 
our predicted inaccuracy) are 11.87% compared to the case of using the very pessimistic nominal voltage 
limit. 
 
In general, the most important features that are selected by the models in Section 2.2.1 can be indicators of 
large voltage droops (i.e. BTB mispredictions, decode stalls, exceptions, branches) and timing errors in the 
pipeline of the CPUs (i.e. integer, FP operations). Therefore, they are intuitively well-correlated to the Vmin 
values. 
 

 
Figure 9: Accuracy of predicting the Vmin of the most sensitive core. 

Table 3: Vmin Prediction Model of the Most Sensitive Core. 

Hardware counters  
used by the model 

Prediction Model  
(with 4 polynomial features) 

L2 data prefetch request (L2_pref) 897.90 + (23.01* L2_pref )  
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BTB mispredictions (BTB_miss) + (54.20 * BTB_miss * FP)  
– (7.15 * INT * L2_pref ) 

– (58.84 * FP * Indirect_br) 
Floating point operation (FP) 
Integer data processing (INT) 
Indirect braches (Indirect_br) 

 
Predicting Vmin of the Most Robust Core 
 
The results of the accuracy of the different prediction models that target the Vmin of the most robust core are 
illustrated in Figure 10. All the models with more than 4 or less than 3 features are less accurate than the 
baseline model. The best accuracy is observed for linear regression after applying polynomial transformation 
with f_regression and using only 3 polynomial features with RMSE equal to 5.0922mV (this model is 
presented in Table 4). The R2 is again high (0.70), while the potential power savings of this model are 
17.52% compared to the case of using the nominal value. 
 

 
Figure 10: Accuracy of predicting the Vmin of the most robust core. 

Table 4: Vmin Prediction Model of the Most Robust Core. 

Hardware counters  
used by the model 

Prediction Model  
(with 3 polynomial features) 

L2 data prefetch request (L2_pref) 
898.24 + (27.36 * L2_pref )  
+ (61.24 * BTB_miss * FP)  

– (8.96 * INT * L2_pref ) 

BTB mispredictions (BTB_miss) 
Floating point operation (FP) 
Integer data processing (INT) 

 
 
Predicting Severity of the Most Sensitive Core 
 
Figure 11 presents the results of the accuracy (in terms of RMSE that is measured in Severity units) when 
we target the Severity of the most sensitive core. Both the linear regression with a simple f_regression 
feature selection mechanism or the model in which we firstly apply a polynomial transformation and then we 
select the best features with f_regression significantly outperform the baseline model for all the cases. The 
simple RFE feature selection and the model with the polynomial transformation with RFE feature selection 
are less accurate than the baseline model for all our experiments. The best accuracy (RMSE equal to 2.7223 
Severity units) is observed for the model that uses f_regression feature selection with 3 features (this model 
is presented in Table 5). The R2 for this model is equal to 0.92 indicating model’s efficiency. The potential 
power savings of using this aggressive prediction scheme that targets the Severity including the measured 
error are 16.59% compared to the case of using the nominal voltage value for protection. These savings 
correspond to 39.76% more power savings instead of using the conservative prediction targeting the Vmin.  
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pared to the case of using the nominal voltage value for protection. 
These savings correspond to 39.76% more power savings instead 
of using the conservative prediction targeting the Vmin.  

 
Fig. 2. Accuracy of predicting the Vmin of the most robust core. 

TABLE 3 
VMIN PREDICTION MODEL OF THE MOST ROBUST CORE 
Hardware counters  
used by the model 

Prediction Model  
(with 3 polynomial features) 

L2 data prefetch request (L2_pref) 
898.24 + (27.36 * L2_pref )  
+ (61.24 * BTB_miss * FP)  
– (8.96 * INT * L2_pref ) 

BTB mispredictions (BTB_miss) 
Floating point operation (FP) 
Integer data processing (INT) 

 
Fig. 3. Accuracy of predicting the Severity of the most sensitive core.  

TABLE 4 
SEVERITY PREDICTION MODEL OF THE MOST SENSITIVE CORE 

Hardware counters  
used by the model 

Prediction Model  
(with 3 features) 

Voltage (Volt) 20.35 + (3.66 * Volt)  
– (2.34 * L1D_tlb_write)  

– (22.53 * dec_stalls) 
L1 data TLB write (L1D_tlb_write) 

Decode stalls (dec_stalls) 
 
Predicting Severity of the Most Robust Core 
Finally, Fig. 4 illustrates the results of the accuracy of the models 
that predict the Severity values of the most robust core of the chip. 
All the models apart from the case of polynomial transformation 
with RFE feature selection outperform again the baseline predic-
tion (the difference is about 5.2 Severity units). The best accuracy 
in terms of RMSE is equal to 2.5 Severity units and it is observed 
for the linear regression model with RFE feature selection using 6 
features (this model is presented in Table 5). The R2 for this model 
is again very high (equal to 0.91) indicating the high efficiency of 
the prediction model. Including the error, the potential power sav-
ings are 20.28% instead of using the nominal voltage value, while 
these gains correspond to 15.75% more power savings compared 
to the conservative case of using a scheme that targets the Vmin. 

 
Fig. 4. Accuracy of predicting the Severity of the most robust core. 

TABLE 5 
SEVERITY PREDICTION MODEL OF THE MOST ROBUST CORE 

Hardware counters  
used by the model 

Prediction Model 
(with 6 features) 

Voltage (Volt) 18.94 + (47.80 * Volt)  
– (20.56 * excpt_taken)  

+ (7.09 * L1I_miss)  
– (3.92 * cond_br) 

 – (29.50 * L1D_tlb_write)  
– (22.11 * dec_stalls) 

Exceptions taken (excpt_taken) 
L1 instruction cache miss (L1I_miss) 

Conditional branches (cond_br) 
L1 data TLB write (L1D_tlb_write) 

Decode stalls (dec_stalls) 

5 CONCLUSION  
We presented a comprehensive statistical analysis using linear 
regression with different feature selection methods to accurately 
predict the safe voltage operation margins of the cores of the en-
terprise X-Gene 2 micro-server ARMv8-based CPU running differ-
ent workloads from the SPEC CPU2006 suite. The power savings 
targeting the Vmin can be up to 17.52% compared to the case of us-
ing the nominal voltage value or up to 20.28% when we use a more 
aggressive scheme that targets the Severity instead of the Vmin. 
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Figure 11: Accuracy of predicting the Severity of the most sensitive core. 

Table 5: Severity Prediction Model of the Most Sensitive Core. 

Hardware counters  
used by the model 

Prediction Model  
(with 3 features) 

Voltage (Volt) 20.35 + (3.66 * Volt)  
– (2.34 * L1D_tlb_write)  

– (22.53 * dec_stalls) 
L1 data TLB write (L1D_tlb_write) 

Decode stalls (dec_stalls) 
 
 
 
Predicting Severity of the Most Robust Core 
 
Finally, Figure 12 illustrates the results of the accuracy of the models that predict the Severity values of the 
most robust core of the chip. All the models apart from the case of polynomial transformation with RFE 
feature selection outperform again the baseline prediction (the difference is about 5.2 Severity units). The 
best accuracy in terms of RMSE is equal to 2.5 Severity units for the linear regression model with RFE 
feature selection using 6 features (this model is presented in Table 6). The R2 for this model is again very 
high (equal to 0.91). Including the error, the potential power savings are 20.28% instead of using the nominal 
voltage value, while these gains correspond to 15.75% more power savings compared to the conservative 
case of using a scheme that targets the Vmin. 

3.
08

05

2.
81

3

2.
72

23

2.
74

73

2.
77

25

2.
80

45

2.
83

66

2.
84

84

2.
87

79

2.
87

6

7.
96

25

8.
06

17

8.
15

36

8.
17

31

8.
25

2

8.
36

15

8.
43

71

8.
54

24

8.
63

19

8.
63

35

7.
89

9

7.
96

84

8.
04

05

8.
14

02

8.
22

92

8.
32

73

8.
42

6

8.
52

83

8.
63

19

8.
63

2

3.
08

06

3.
05

70

3.
03

87

3.
03

75

3.
05

25

3.
05

53

3.
09

57

3.
13

54

3.
12

18

2.
99

59

0

1

2

3

4

5

6

7

8

9

10

1 feature 2 features 3 features 4 features 5 features 6 features 7 features 8 features 9 features 10 features

R
M

SE
 (S

ev
er

ity
 u

ni
ts

)

f_regression RFE polynomial with RFE polynomial with f_regression baseline

avg. baseline value 7.9478



                   D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories                                                                                                                                                                         
 

 

 
© 2018. UniServer Consortium Partners. All rights reserved                                                                                             23 

 

 
Figure 12: Accuracy of predicting the Severity of the most robust core. 

 
Table 6: Severity Prediction Model of the Most Robust Core. 

Hardware counters  
used by the model 

Prediction Model 
(with 6 features) 

Voltage (Volt) 
18.94 + (47.80 * Volt)  

– (20.56 * excpt_taken)  
+ (7.09 * L1I_miss)  
– (3.92 * cond_br) 

 – (29.50 * L1D_tlb_write)  
– (22.11 * dec_stalls) 

Exceptions taken (excpt_taken) 
L1 instruction cache miss (L1I_miss) 

Conditional branches (cond_br) 
L1 data TLB write (L1D_tlb_write) 

Decode stalls (dec_stalls) 
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3. Characterization of Dynamic Memories 
Apart from the cores and the on-chip caches, Dynamic Random-Access Memory (DRAM) is an important 
subsystem of computing systems that has recently attracted a great amount of interest as a target for power 
and performance optimizations. The density of DRAM devices which has been increasing steadily the past 
few decades, coupled with our increased needs for main memory capacity makes DRAM a significant 
contributor in the total power budget of contemporary computing systems [7]. Moreover, further scaling of 
DRAM cells is accompanied by reduction of cell reliability and increased cell leakage leading to high refresh 
rates, which in turn inflates power consumption [8] [9] [10] [11] [12]. As a result, any power optimizations 
regarding DRAM devices has a significant impact [13]. 
 
DRAM power could be reduced through lowering the supplied voltage or relaxing DRAM refresh rate, 
however this could compromise consistency of data stored in DRAM. This rate determines how often each 
cell is refreshed, which is required to sustain data stored in DRAM due to its dynamic nature. Refresh 
operation consumes power that is expected to be up to 50% of the total power consumption of the whole 
DRAM power in next generations of density [14]. 
 
In this deliverable, we present the results of the experiments with DRAM operating at the lowered input 
voltage and relaxed refresh rates. We discovered the major parameters affecting DRAM faults. In order to 
extend the experiments, we have implemented a thermal controlled environment to test the memory under a 
range of temperatures and realized a heterogeneous reliability framework on X-Gene 2.  
 
3.1.  Experimental Setup 

Our experimental setup is based on the two X-Gene 2 validation boards that have been delivered to QUB by 
APM. In D4.1, APM provided a brief description of the X-Gene 2 firmware and specification of i2c interfaces 
to control the main operational parameters of various components inside the development boards, such as 
supplied chip and DRAM voltages, refresh rate of DRAM and access to sensors. Furthermore, Linux kernel 
of X-Gene 2 can report all DRAM and cache errors registered by ECC in syslog. The kernel receives 
information about ECC errors from the firmware, and all errors are registered asynchronously. The kernel 
reports information about source of an error, including DRAM, cache, MCU, bank, rank and so on. It also 
provides information about the type of error: correctable (single-bit error which could be corrected by ECC) 
and uncorrectable (double-bit errors which could be only registered by ECC). 
 

3.1.1. Framework for thermal stressing 

Temperature plays a major role in the reliability of the DRAMs as shown by previous research works [15] [16] 
and validated by our experiments, so to avoid any effects of the variable temperature of the DIMMs, we need 
to control the temperature of the server. Previous works have achieved this either by setting the machine in a 
thermal oven [15] or having an element on each DIMM controlling the temperature [17]. 
 
Our approach is based on the second scheme, in order to control the temperature on the DIMMs, we have 
developed a custom adapter that fits on top of each side of the DIMM. The control board (Figure 13) is 1U 
rack-mountable that has a power supply, a Raspberry Pi 3, for network control of the system, and four Carel 
ir33, two-channel temperature PID controllers that have NTC sensors and two solid state relays to control the 
current on a resistive element that is mounted on the both sides of the DIMM. The adapter consists of a 
resistive element and thermally conductive tape transferring the heat of the element to all the chips of the 
DIMMs in uniform way. Figure 14 shows the X-Gene 2 board fitted with four DIMMs with the custom adapter 
and the sensors. 
 
We measure the temperature of the chips through the sensor embedded on the SPD and directly on the 
heating elements. The controller of the elements is a PID controller, and we have observed a deviation from 
the set temperature of +/-0.8 °C.  
 
Figure 15 shows the X-Gene 2 server from above with a thermal photograph when on the board, the thermal 
adapters do not operate. In this way, we can identify the hotspots around the board and observe the 
difference of temperature of each DIMM. 
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Figure 13: Control board of the thermal framework. 

 

Figure 14: X-Gene 2 with 4 DIMMs with thermal adapters, consisting of a resistive element and a thermal sensor. 
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Figure 15: Photograph of X-Gene 2 with annotation of components and equivalent thermal photograph 

pinpointing the difference in temperature of DIMMs 

 

3.1.2. Framework controlling allocations 

As previously mentioned on the D3.3, we had explored relaxation of the refresh rate on a dual-socket Intel 
server, in order to try an extended range of refresh rate. With that setup, we had the capability to split the 
memory into two domains, one reliable with the nominal settings applied, while on the second one, we can 
control the parameters of the memory and have variable reliability. This was possible because there were 
two separate memory controllers.  
 
The X-Gene 2 has two Memory Controller Bridges (MCBs) that each one controls two Memory Controller 
Units (MCUs), for a total of four MCUs. Voltage can be controlled on the granularity of the MCBs, while 
DRAM parameters, such as refresh rate, CAS latency, row precharge and active time, can be configured 
independently on each MCU. This gives to the X-Gene 2, the ability to control on fine granularity and on 
demand for each memory channel the parameters.  
 
A limitation of the applicability of this type of control was the interleaving of memory across the MCBs and 
MCUs. Interleaving is commonly used in memory controllers to utilize the maximum out of the total 
bandwidth of the channels by spreading consecutive addresses and accesses across the memory channels. 
This can cause issues, if you are setting different refresh rate in the MCUs, then the state of each MCU could 
be different, for example one of the MCUs could refresh a line while the others are idle. APM provided 
support for the firmware of the X-Gene 2 and enabled in the firmware the option to select the level of 
interleaving in the memory system, having the option for enabled interleaving between MCBs and MCUs, 
enabled interleaving only inside each MCB or disabling interleaving completely. This allow us to exploit the 
fine-granularity of setting the parameters of each MCU independently. 
 
In order to accommodate the changes of the interleaving and in consequence of the hardware in the 
software layer, changes in the Linux kernel are needed. During this period APM also provided us with the 
latest Linux kernel supporting the X-Gene, specifically the version 4.11. We have made modifications in this 
version of the kernel and we can make zones of memory at the boot-up, for each MCU. We can then restrict 
the kernel and the applications from using by the default memory from one of the zones, that MCU then 
could be configured with settings that affect the reliability without affecting the critical parts of the system. 
Figure 16 shows an example of the memory address of the two MCBs that is not interleaved, that can be 
used for different parts of the application. Specifically, it is shown that the MCB 1 is configured with relaxed 
parameters, and considered variably-reliable as errors could appear in this domain.  
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Figure 16: System setup for reliability domains realized in the X-Gene 2. 

 
3.2.  Experiments 

For different experiments, we modify the refresh rate and the voltage independently, or as well as 
simultaneously. The X-Gene 2 platform allows us to control refresh rate for each MCU, up to a maximum 
refresh period of 2.283s, while the nominal one is 64ms. The platform also allows to configure voltage of 
each MCB separately. The MCU0/1 (MCB0) and MCU2/3 (MCB1) could be operated at different voltage 
levels. The nominal supply voltage for each MCB is 1.5V, while we found the minimum supply voltage to be 
1.428V, as lower values of voltage make the system instantaneously non-functional. 
 
We have experimented with a set of benchmarks, ranging from micro-benchmarks that are used typically in 
DRAM characterization to real-world applications. Each one of those stresses the cores and DRAMs in a 
different way and allows to study the influence of application specific characteristics i.e. access patterns and 
used number of threads on DRAM reliability either directly or indirectly, by studying their impact on the 
incurred SoC activity and DRAM temperature. In particular, we chose: Data pattern micro-benchmarks which 
are designed to stress the retention time while exploiting the impact of neighbouring cells. As previous 
researchers suggested, we have used the following patterns: all 0s, all 1s, checkerboard and random. 
Rodinia Benchmark Suite represents a variety of HPC algorithms that are used for benchmarking parallel 
computers. We chose to use backprop, nw, srad and kmeans to cover a range of domains, i.e. Machine 
Learning, Bioinformatics, Image Processing and Data Mining. To evaluate how parallelism and processing 
power affects the characterization, we have executed these benchmarks with 1 and 8 threads. As a real 
workload, we are using the WSE DoSSensing, operating with 4 threads. And finally, CloudSuite [18] is 
suitable workload for the X-Gene2 as ARM based servers target to substitute Intel servers in Cloud and 
datacenter. To cover popular server workloads, we have ported three benchmarks from the CloudSuite to 
ARMv8 which are being deployed through containers in Docker: Memcached [19], Graph Analytics [20] and 
Web Search [21]. 
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3.2.1. Results on nominal conditions of temperature 

The initial purpose of our experiments is understanding if memory reliability operated under relaxed refresh 
rate could be characterized with a set of micro-benchmarks. To follow this, we should identify all cells that 
have small retention time, and thus are more prone to failures. We do this by executing data pattern micro-
benchmarks ensuring that we cover all memory available for the user space.  
 
Figure 17Error! Reference source not found. shows the spatial and density distribution of errors between 
different memory locations. Identification of memory locations where ECC discovered errors are provided on 
the left, while the distribution of locations between MCUs is shown on the right. The darkness of the color 
indicates the number of errors registered per 8 hours for a certain memory location, while the color identifies 
the experiment, blue reflects an experiment with relaxed refresh rate, red for an experiment with 
simultaneous relaxation of refresh and voltage, and if the errors were detected in both of the experiments, we 
mark them with green color.  
 
We observe that the random micro-benchmark identifies more locations than the other micro-benchmarks, 
which is in agreement with the observations made also by Liu [15]. In addition, in all our experiments with the 
server operated under the nominal conditions, we observe only single bit errors, which were corrected by the 
available SECDED ECC. Based on such an analysis, we reach similar conclusions as existing studies [15], 
refresh rate can be aggressively relaxed, in our case up to 43x, from 64 ms to 2.283 s. For those 
experiments, the probability of erroneous 64-bit word is around 10-9, which can be handled by ECC, as long 
as two bit errors do not happen on the same word.  
 
To investigate if the above conclusion is accurate enough and the micro-benchmarks are able to reveal all 
weak cells, we executed the four memory-intensive Rodinia benchmarks under relaxed parameters. In these 
experiments. We execute a single threaded version and a parallel version with 8 threads to evaluate how 
parallel access patterns affect the distribution of errors for each benchmark. In Figure 17Error! Reference 
source not found., the results of the experimental campaign are evident that the single threaded version of 
each benchmark triggers similar number of memory errors at the same locations as the ones observed when 
executing the micro-benchmarks.  
 
In addition, we observe that the parallel Rodinia benchmarks are able to stress and reveal more memory 
locations triggering errors that have not been discovered by the micro-benchmarks and the single threaded 
versions. This leads to a significant observation that the parallel versions of the benchmarks do affect the 
system and the reliability, while significantly changing the spatial distribution of errors. Each benchmark has 
some unique locations that are not activated by the other benchmarks. These results complement the ones 
extracted from Rodinia, leading to the following observation. At the normal operating conditions, data pattern 
micro-benchmarks are not as effective in detecting weak cells as real workloads when DRAM is operated 
with relaxed refresh rate. 
 
We experimentally identified the lowest operating DRAM supply voltage at 1.428 V after which most probably 
the circuitry of DRAM stops working. This voltage level is higher than the minimum supply voltage of DIMM 
specification [22]. In Figure 17Error! Reference source not found., we can observe how the spatial and 
density distribution of errors differs for the experiment under relaxed refresh rate and voltage. When we also 
lower the voltage, ECC reports errors at locations that have not been discovered before. We clearly see that 
if we lower the supply voltage while having relaxed refresh rate, it significantly increases dispersion of error 
locations. We suggest that this experiment manifests more errors due to cells which fail being less charged 
under lowered voltage. 
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Figure 17: Spatial and density distribution of errors between cells for memory operated with relaxed refresh only 

(blue), relaxed refresh and lowered supply voltage (red) and if the error occurred in both scenarios (green). 

Figure 18 shows the same spatial and density distribution of errors for memory operated with relaxed refresh 
rate and lowered supply voltage comparing the CloudSuite benchmarks and the micro-benchmarks. It is 
obvious that the number of errors located while executing the benchmarks are much higher than previously 
discovered by the micro-benchmarks or the Rodinia. As it is not yet clear why the different benchmarks are 
able to identify more locations than the micro-benchmarks, we continued our research trying to identify the 
parameters that are affecting the reliability of the whole system when operating under a real hardware 
platform and realistic workloads.  

 
Figure 18: Spatial and density distribution of errors between cells for memory operated with relaxed refresh and 

lowered supply voltage. 

One significant finding is that the WSE DoSSensing application do not excite the memory subsystem and we 
do not observe any correctable error during the experiments relaxing the refresh rate or both relaxing the 
refresh rate and the supply voltage. This could be explained based on the data from the next Section, where 
we try to identify the application parameters that are affecting the reliability of DRAM. 
 

3.2.2. Performance indicators and memory access patterns 

The difference in the distribution of errors, that was found previously in D3.3 and in the previous Section, 
may be related to benchmark characteristics. To explore the impact of the characteristics among 
benchmarks, such as data and frequency memory access patterns, and other performance characteristics, 
such as IPC and the CPU utilization, on the distribution of errors, we collect statistics for the performance 
indicators denoted in using perf tool. Particularly, we investigate the correlation between the indicators, the 
total number of memory errors and the number of unique error locations reported for our experiments with 
refresh rate and voltage using the Spearman's rank correlation coefficient which characterizes the monotonic 
relationship between two variables. Table 7 shows the correlation coefficient r, which denotes the strength 
and direction of the correlation, and ρ-value for a hypothesis test whose null hypothesis (H0) is that two sets 
of data are not correlated, i.e. the probability that the variables are not correlated. 
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There is no evidence of the correlation between the performance indicators reflecting memory access 
patterns and the number of errors or the number of unique error locations. However, we found that this 
correlation is very strong for the CPU utilization indicator: ρ-value for the total number of errors is 0.0003 and 
0.052 for the number of unique error locations (see Table 7). Nonetheless, it is not clear why the correlation 
is observed only for the CPU utilization but not for other performance parameters.  
 

Table 7: Spearman's rank correlation coefficient and ρ-value for various performance indicators. 

Event Relaxed Refresh Rate Lowered Voltage 
Pattern Number of errors Number of 

unique error 
locations 

Number 
of errors 

Number of 
unique error 

locations 
	 r	 Ρ	 r	 ρ	 r	 ρ	 r	 ρ	
IPC		 0.333	 0.318	 0.257	 0.445	 0.501	 0.116	 0.065	 0.849	
L1	read		 0.287	 0.392	 0.166	 0.627	 0.469	 0.145	 0.014	 0.967	
L1	write		 0.187	 0.582	 0.078	 0.819	 0.219	 0.518	 -0.182	 0.592	
L1	accesses		 0.305	 0.361	 0.221	 0.514	 0.46	 0.154	 -0.019	 0.957	
L2	read		 0.187	 0.582	 0.156	 0.646	 -0.137	 0.689	 0.154	 0.651	
L2	write		 0.196	 0.564	 0.087	 0.798	 0.21	 0.536	 -0.173	 0.612	
L2	accesses		 0.333	 0.318	 0.257	 0.445	 0.501	 0.116	 0.065	 0.849	
Mem	read		 0.068	 0.842	 0.17	 0.617	 -0.21	 0.536	 0.252	 0.455	
Mem	write		 -0.159	 0.64	 -0.097	 0.778	 -0.383	 0.245	 0.089	 0.796	
Mem	accesses		 -0.064	 0.852	 0.041	 0.904	 -0.301	 0.369	 0.182	 0.592	
CPU	utilization	 0.69	 0.019	 0.882	 0.0003	 0.506	 0.112	 0.598	 0.052	

 
On top of the hardware counters of the application, it is already known that the temperature of DIMMs affects 
DRAM reliability and thus the spatial and density distribution of errors. To investigate this, we have measured 
the temperature by using on-board sensors provided for each DIMM, while having the server on a typical 
server rack with forced ambient temperature of 18°C without the thermal adapters.  
 

 
Figure 19: Average temperature of the core and each DIMM across the duration of execution of the benchmark. 
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The top part of Figure 19Error! Reference source not found. shows the average temperature of the SoC 
for the period of the 8-hour experiments with 95% confidence intervals and the bottom the corresponding 
average temperatures for each DIMM. The highest temperature averaged over all DIMMs was measured for 
the graph-analytics benchmark which also incurred the highest dispersion of error locations in memory 
during our experiments under relaxed refresh rate and voltage as explained in the previous Section. Further 
analysis of the correlation between the temperature and the number of errors can be seen on Table 8, 
presenting the Spearman’s rank correlation. 
 

Table 8: Spearman's rank correlation coefficient and ρ-value for DRAM and SoC temperatures. 

Event Relaxed Refresh Rate Lowered Voltage 
 Number of 

errors 
Number of unique 

error locations 
Number of 

errors 
Number of unique 

error locations 
	 r	 ρ	 r	 ρ	 r	 ρ	 r	 ρ	
SoC	temperature	 0.232	 0.492	 0.437	 0.1792	 0.592	 0.055	 0.714	 0.0137	
DRAM	temperature		 0.601	 0.050	 0.763	 0.0063	 0.378	 0.252	 0.825	 0.018	

 
 
 
Note also that in our experiments, MCU0 was found to have the highest temperature, which explains the fact 
that the majority of errors took place in MCU0. Figure 20 shows the spatial and density distribution of the 
errors between MCUs and ranks when we relax the refresh rate and lower the voltage in the case of Rodinia 
benchmarks, single- multi- threaded and the CloudSuite benchmarks. In Figure 20 we present the 
distribution as a polar plot where θ-axis specifies MCUs and ranks, while ρ-axis reflects the number of errors. 

      . 
Figure 20: Distribution of the number of errors across each DIMM and rank. 

i) Rodinia single-thre aded, ii) Rodinia multi-threaded, iii) CloudSuite. 

3.2.3. Results with thermal stressing framework 

As it is obvious from the previous experiments that the reliability of the machine is heavily affected by the 
temperature, we continue on with experiments on the thermal framework. The DRAM temperature across 
different benchmarks vary due to the correlation with the workload characteristics and SoC temperature as 
shown on the previous section. It is important to test the DIMMs under a range of temperatures, simulating 
different ambient temperatures as the characterization needs to be able to identify critical conditions. Micro-
server at the Edge of Cloud should be able to sustain operation under non-ideal conditions so it is needed to 
characterize their reliability on the extreme margins.   
 
Furthermore, working with fixed temperatures of the DIMMs will help in identifying the data and frequency 
patterns of the benchmark that contribute in having more errors while avoiding any indirect effect of the 
benchmarks, such as the CPU utilization, on the temperature of the DIMMs. We are using the thermal 
framework described in Section 3.1.1 for characterization of the X-Gene 2 at fixed temperatures for the 
DIMMs.  
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We are starting the characterization with the WSE DoSSensing application, we are executing it for 400 
executions with four parallel instances, under controlled temperature of 40, 50, 60 and 70 °C and we observe 
the correctable errors reported by the ECC as shown in the Table 9. Furthermore, when we analyse the 
number of unique weak cells across the duration of the experiment, distinguishing errors in 400 runs (Table 
9Error! Reference source not found.), we can clearly see that the majority of the errors occur in the first 
part of the application.  
 
Generalizing this based on extended experiments with multiday executions, we observe that in the first 25% 
of the application’s execution duration, we discover more than 80% of the total weak cells. As it will be 
described in more detail in one of the next Sections. 
 

Table 9: Testing WSE DoSSensing under variable temperature. 

Temperature (°C) Total Number of Errors  Number of Unique Errors  
40 4 4 
50 1119 13 
60 36793 653 
70 313953 7010 

 

 

 
Figure 21: Unique weak cells across the duration of the experiment. 

 
Table 10 shows the distribution of the unique weak cell locations that were discovered and corrected by ECC 
during the experiments of the WSE DoSSensing benchmark at 70°C. For the reported errors, we have 
experiments with combined both relaxed refresh rate and lowered supply voltage.  
 

Table 10: Distribution of errors in different device levels. 

Event Number of Unique Weak Cell Location per device (DIMM/rank/bank) Max difference 
(%) 

Across	DIMMs	 1626	 2385	 1453	 1546	 39.07	%	
Across	Ranks	 3411	 3599	 5.22	%	
Across	Banks	 796	 922	 884	 957	 852	 839	 817	 943	 15.58	%	
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Figure 22: Distribution of errors across the duration of experiments of 2 hours for relaxed refresh rate and 

voltage under an  enforced DRAM temperature of 50°C and 60°C. 

Moving on with the micro-benchmarks, Rodinia benchmarks and the CloudSuite, Figure 22 shows the results 
of the discovered correctable ECC errors for experiments of two hours. The experiments were conducted in 
shorter duration based on the findings of a next Section and because the restrictive nature that it would time 
months of machine time to execute the full experiments in many different temperatures and parameter 
settings of refresh and voltage. Form the data, we observe that it is clear that the random micro-benchmark 
is the best at discovering the weak cells location as was previously reported in the [15] when the conditions 
of temperature are controlled and not affected by the CPU utilization of the benchmark. 
 
One other observation that could made is that for different temperatures the order that benchmarks do rank 
based on the number of weak cells discovered is not the same which could be affected by other parameters. 
 
It is interesting to see that across our experiments with real-workloads, we show that an increase of 10°C on 
the DIMMs leads to an order of magnitude increase in the total number of errors and the number of unique 
weak cells discovered. This is according to the findings of other work [15] that their experiments are based 
on microbenchmarks alone.   
 
Similarly to the nominal conditions of temperatures, lowering only the voltage of the DRAM do not produce 
much errors, in the order of tens, and could be considered negligible compared to the hundreds of unique 
locations at 50°C and thousands at 60°C, however in the experiments where the lowered supply voltage is 
combined with relaxed refresh the behaviour of the manifested errors gets affected. 
 

3.2.4. Optimization of the experiment duration 

One of the targets in our research is to investigate how much time is required to characterize reliability of 
DRAM operated under relaxed refresh rate and lowered supply voltage for a specific benchmark. To achieve 
a good coverage of weak cells [16] and high confidence for our results, we run each benchmark for 8 hours 
in our initial characterization. We choose this period of testing to make our results comparable with [16] 
where authors use 1000 rounds in their micro-benchmarks which correspond to 8 hours of running of these 
micro-benchmarks on the APM platform. We run Rodinia and CloudSuite benchmarks in a loop until the total 
execution time for each benchmark is 8 hours. 
 
To reduce the total time of the experiments, we analyse the distribution of the discovered error locations in 
time to find the optimal trade-off between the number of discovered distinct error locations and running time 
for each benchmark. Figure 23-a demonstrates how the total number of distinct error locations discovered 
using all running benchmarks changes with time of refresh rate experiments. Particularly, the left y-axis 
shows the percentage of distinct error locations discovered from the beginning of experiments up to a certain 
moment, t, accumulated over all benchmarks, i.e. 
 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟IJKLM"JNOM

%

𝑁𝑢𝑚𝑏𝑒𝑟IJKLM"JNOPQJRSO
%

 

 
While the right y-axis shows the percentage of distinct error locations discovered for a certain period of time 
[t, t+10minutes] accumulated over all benchmarks, i.e. 
 



                   D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories                                                                                                                                                                         
 

 

 
© 2018. UniServer Consortium Partners. All rights reserved                                                                                             34 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒IJKLM"JNO 𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟IJKLM"JNOMV'%W"NRMXO

%

𝑁𝑢𝑚𝑏𝑒𝑟IJKLM"JNOPQJRSO
%

 

 
Figure 23Error! Reference source not found.-b depicts the same statistics for our experiments with relaxed 
refresh and voltage. We see that benchmarks cover about 80% (84.27% for experiments with relaxed refresh 
and 76.26% for experiments with relaxed both) of error locations for 120 minutes, which is 25% of the total 
time of one application run. Moreover, in both figures we see that 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒IJKLM"JNO 𝑡  does not exceed 3% 
after running benchmarks for 120 minutes. Following these results, we reduce the total time of all 
experiments to 2 hours and presumably cover about 80% of all error locations which may be discovered 8 
hours of these experiments. 

 
Figure 23: Coverage of microbenchmark across the duration of the experiments for a) refresh rate and voltage, 

and b) refresh rate only. 

3.2.5. Effectiveness of benchmarks 

We can compare the effectiveness in discovering the weak cells of each benchmarks based on the number 
of locations of weak cells discovered. We accumulate the discovered locations of weak cells from the 
experiments in a specific temperature of all the application and for each application we calculate the 
percentage of the total that are discovered by the application. The results about the random micro-
benchmark in Figure 24 show that the coverage compared to the total number of locations for all the 
benchmarks is considerably high at more than 80% of the total locations. So, it is adequate to cover the 
majority of the locations without having to run the experiments with the rest of the benchmarks. 

 

 
Figure 24: Coverage of the total locations of the errors discovered by each application at two temperatures. 

 

3.2.6. Effectiveness of existing Error Correcting Codes (ECC) 

During our experiments, ECC is activated for detecting and correcting of the errors, allowing us to evaluate 
also its efficacy as an error mitigation mechanism. SLIMpro monitors the SoC and reports ECC errors 
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detected by hardware to the Linux kernel through delivering an asynchronous message via an i2c mailbox 
interrupt. The SLIMpro reports to the kernel: the source of an error at the level of the MCU, rank/bank, row 
and column which point to a word in memory where the error has been detected. 
 
The implementation of ECC in the server is Single Error Correction, Double Error Detection (SECDED), as 
the name points, ECC can correct one bit-errors and detect two bit-errors. However, if we have more than 
two errors in a word, the error could occur as Silent Data Corruption (SDC) which are not detected by the 
ECC and may silently propagate to the application execution. To be able to detect those, we compare the 
output of each execution with a golden reference output of an execution when DRAM was operated at the 
nominal conditions for the Rodinia benchmarks, while for the CloudSuite, we implement a similar approach 
on the client side, validating the received data compared to a golden output. For the micro-benchmarks, we 
can measure the exact number of errors that manifested as SDCs.   
 
Our results indicate that SECDED ECC that is anyway available in server-grade DRAMs, can help maintain 
the DRAM reliability high even under relaxed refresh rate and voltage and help to address the varying weak 
cells across applications. In fact, in all our experiments with all the benchmarks discussed above, we 
discovered only one application which trigger an uncorrectable error on a specific set of DIMMs and high 
temperature (70°C) close to the maximum allowed by the DRAM DIMM, while all other reported errors are 
only single bit-errors, which were all corrected by ECC, even when DIMMs were operated under a high 
temperature, up to 60°C. Note that we also have not discovered any SDCs when running the benchmarks. 
Nonetheless, there is a possibility that a specific combination of DIMMs, temperature and benchmarks could 
trigger uncorrectable errors and system failures. 
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4. Conclusions and Future Research 
This deliverable presents the results of memory subsystem characterization for the APM’s X-Gene 2 micro-
server operating under scaled voltage and refresh rate parameters. Firstly, we present two new studies 
concerning development of efficient cache and pipeline micro-viruses to identify safe operation margins for 
the server and a statistical analysis that aims to predict safe voltage operation limits for the ARMv8 cores. 
Secondly, we demonstrate a framework to identify system level parameters which may affect DRAM 
reliability when running selected applications. By building the correlation between intrinsic and extrinsic 
parameters of the system and DRAM error behavior, we identify program inherent features which have a 
significant impact on errors in DRAM operating under scaled supply voltage and refresh rate. Finally, we 
explore the necessary testing duration to ensure that DRAM operates reliably under discovered supply 
voltage and refresh rate levels. 
 
The output of this deliverable provides the necessary inputs and insights for WP4 to build the prediction 
model which will be presented in D4.8.  
 
The next steps on the task T3.3 regarding the characterization of memory subsystem include: 

• Finalization of the unified characterization framework on D3.7 “Final Evaluation of Cores, Caches 
and Dynamic Memories”. 

• Experiments with the rest of applications provided by the project partners. 
• Extension of the system level parameter list with new parameters which may affect DRAM and chip 

reliability. 
 
 
In the final year of the project, we will continue the characterization process using different chips and apply 
the same characterization routines to the X-Gene 3 micro-server, which contains the latest generation of 64-
bit ARM cores and DDR4 memories. 
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