
© 2018. UniServer Consortium Partners. All rights reserved

D3.6 2nd Analysis of On-Chip Caches
and Dynamic Memories

Contract number 688540
Project website http://www.uniserver2020.eu
Contractual deadline Project Month 24 (M24): 31st January 2018
Actual Delivery Date ???
Dissemination level Public
Report Version 1.0
Main Authors Konstantinos Tovletoglou (QUB), Lev Mukhanov (QUB), Georgios

Karakonstantis (QUB), George Papadimitriou (UOA), Manolis Kaliorakis
(UOA), Athanasios Chatzidimitriou (UOA), Dimitris Gizopoulos (UOA)

Contributors

Reviewers Arnau Prat(UPC)

Keywords Characterization, on-chip caches, DRAMs, voltage/frequency/refresh rate
scaling, corrected errors, uncorrected errors, silent data corruptions,
crashes

Notice: The research leading to these results has received funding from the European Community’s
Horizon 2020 Programme for Research and Technical development under grant agreement no. 688540.

Ref. Ares(2018)1410165 - 14/03/2018

© 2018. UniServer Consortium Partners. All rights reserved

Disclaimer
This deliverable has been prepared by the responsible Work Package of the Project in accordance with
the Consortium Agreement and the Grant Agreement Nr 688540. It solely reflects the opinion of the
parties to such agreements on a collective basis in the context of the project and to the extent foreseen
in such agreements.

Acknowledgements
The work presented in this document has been conducted in the context of the EU Horizon 2020.
UniServer is a 36-month project that started on February 1st, 2016 and is funded by the European
Commission. The partners in the project are:

The Queen’s University of Belfast (QUB)
The University of Cyprus (UCY)
The University of Athens (UoA)
Applied Micro Circuits Corporation Deutschland Gmbh (APM)
ARM Holdings UK (ARM)
IBM Ireland Limited (IBM)
University of Thessaly (UTH)
WorldSensing (WSE)
Meritorious Audit Limited (MER)
Sparsity (SPA)

More information
Public UniServer reports and other information pertaining to the project are available through the
UniServer public Web site under http://www.uniserver2020.eu.	

Confidentiality Note
This document may not be copied, reproduced, or modified in whole or in part for any purpose without
written permission from the UniServer Consortium. In addition to such written permission to copy,
reproduce, or modify this document in whole or part, an acknowledgement of the authors of the
document and all applicable portions of the copyright notice must be clearly referenced.

Change Log

Version Description of change
0.1 Initial draft – Outline
0.2 Integrate
0.3 Changes in QUB part
0.4 Review from UoA

1.0 Final version for delivery to EC

© 2017. UniServer Consortium Partners. All rights reserved 3

Table of Contents

EXECUTIVE SUMMARY ... 5	
1.	 INTRODUCTION ... 5	
2.	 ON-CHIP CACHES CHARACTERIZATION ... 7	

2.1.	 CHARACTERIZATION OF THE WSE DOSSENSING – JAMMER DETECTOR .. 7	
2.2.	 CACHE AND PIPELINE MICRO-VIRUSES .. 9	

2.2.1.	 L1 Data Cache ... 10	
2.2.2.	 L1 Instruction Cache .. 11	
2.2.3.	 Unified L2 Cache ... 12	
2.2.4.	 L3 Cache ... 13	
2.2.5.	 ALU .. 13	
2.2.6.	 FPU .. 14	
2.2.7.	 Pipeline .. 14	
2.2.8.	 Micro-viruses validation ... 14	
2.2.9.	 Experimental Evaluation .. 15	

2.3.	 STATISTICAL ANALYSIS BASED ON CHARACTERIZATION RESULTS .. 18	
2.3.1.	 Experimental Results ... 19	

3.	 CHARACTERIZATION OF DYNAMIC MEMORIES ... 24	
3.1.	 EXPERIMENTAL SETUP ... 24	

3.1.1.	 Framework for thermal stressing ... 24	
3.1.2.	 Framework controlling allocations ... 26	

3.2.	 EXPERIMENTS .. 27	
3.2.1.	 Results on nominal conditions of temperature ... 28	
3.2.2.	 Performance indicators and memory access patterns ... 29	
3.2.3.	 Results with thermal stressing framework ... 31	
3.2.4.	 Optimization of the experiment duration .. 33	
3.2.5.	 Effectiveness of benchmarks ... 34	
3.2.6.	 Effectiveness of existing Error Correcting Codes (ECC) ... 34	

4.	 CONCLUSIONS AND FUTURE RESEARCH .. 36	
5.	 REFERENCES .. 37	

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 4

Index of Figures

Figure 1: Average power savings for 100 iterations of the experiment in UoA chip. ... 8	
Figure 2:Average power savings for 100 iterations of the experiment in QUB chip. ... 8	
Figure 3: Average power savings for 100 iterations of the experiment in UCY chip. .. 9	
Figure 4: A 256KB 32-way set associative L2 cache. ... 12	
Figure 5: IPC measurements for both micro-viruses (top) and SPEC CPU2006 benchmarks (bottom). 15	
Figure 6: Power consumption measurements for both the micro-viruses and the SPEC CPU2006
benchmarks. The graphs at the top show the power consumption at nominal voltage (980 mV), when running
on one core (left) and on all 8 cores concurrently (right). The bottom graphs show the power measurements
when the microprocessor operates at 920mV, in order to present the energy efficiency when operating below
nominal voltage conditions. ... 15	
Figure 7: Detailed comparison of Vmin between the 12 SPEC CPU2006 benchmarks and micro-viruses for the
TSS chip. ... 16	
Figure 8: Maximum Vmin among 12 SPEC CPU2z06 benchmarks and the proposed micro-viruses for TTT,
TSS and TFF in PMD domain. Rightmost at bottom shown the maximum Vmin of 12 SPEC CPU2006
benchmarks and the proposed L3 micro-virus in SoC domain. ... 17	
Figure 9: Accuracy of predicting the Vmin of the most sensitive core. .. 20	
Figure 10: Accuracy of predicting the Vmin of the most robust core. .. 21	
Figure 11: Accuracy of predicting the Severity of the most sensitive core. ... 22	
Figure 12: Accuracy of predicting the Severity of the most robust core. ... 23	
Figure 13: Control board of the thermal framework. .. 25	
Figure 14: X-Gene 2 with 4 DIMMs with thermal adapters, consisting of a resistive element and a thermal
sensor. ... 25	
Figure 15: Photograph of X-Gene 2 with annotation of components and equivalent thermal photograph
pinpointing the difference in temperature of DIMMs .. 26	
Figure 16: System setup for reliability domains realized in the X-Gene 2. .. 27	
Figure 17: Spatial and density distribution of errors between cells for memory operated with relaxed refresh
only (blue), relaxed refresh and lowered supply voltage (red) and if the error occurred in both scenarios
(green). .. 29	
Figure 18: Spatial and density distribution of errors between cells for memory operated with relaxed refresh
and lowered supply voltage. .. 29	
Figure 19: Average temperature of the core and each DIMM across the duration of execution of the
benchmark. .. 30	
Figure 20: Distribution of the number of errors across each DIMM and rank. ... 31	
Figure 21: Unique weak cells across the duration of the experiment. ... 32	
Figure 22: Distribution of errors across the duration of experiments of 2 hours for relaxed refresh rate and
voltage for forced temperature of 50°C and 60°C. .. 33	
Figure 23: Coverage of microbenchmark across the duration of the experiments for a) refresh rate and
voltage, and b) refresh rate only. ... 34	
Figure 24: Coverage of the total locations of the errors discovered by each application at two temperatures.
... 34	

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 5

Executive Summary
This document is a part of the Task T3.3 “Analysis of caches and dynamic memories” as presented in the
Description of Action (DoA) of the UniServer project under Work Package 3 (WP3 – “Analysis and
Enhancement of Hardware Substrate Outside Nominal Conditions”). This task uses the X-Gene 2 board as a
target platform described in the Task 3.1 “Definition and enhancement of the target platform” and contributes
to two objectives: (a) analysis of error behaviour for the processor cores and on-chip caches under various
voltage and frequency settings and stress conditions, and (b) analysis of DRAM error behaviour operating
under scaled refresh rates and supply voltage and various temperature conditions.

This deliverable focuses on the presentation of developed tools and methodologies to analyse error
behaviour for the on-chip caches and dynamic memories of the target platform (X-Gene 2) operating under
off-nominal Voltage/Frequency/Refresh rate (VFR) conditions. Making an extension to the characterization
study discussed in D3.3, we identify workload-dependent parameters that affect reliability of the system
operating under off-nominal conditions which can be exploited to build a failure prediction model (the task
T4.4). The outcomes of this report are going to be used:

• To develop dedicated programs to stress the system operating under Voltage/Frequency/Refresh
rate (VFR) conditions. These programs can be synthetic stress tests (“diagnostic virus”) for the
cores, the on-chip caches and DRAM as presented in T3.2 and T3.3 of WP3 respectively and real
application kernels as presented in D4.4 “Benchmark Suite for StressLog” which is a part of the task
T4.3 in WP4.

• To provide valuable directions for building of the prediction model being developed in T4.4 and to be
presented in D4.8.

1. Introduction
UniServer targets to improve performance and energy efficiency in cloud systems by utilizing the pessimistic
Voltage/Frequency/Refresh rate (VFR) margins conventionally adopted by hardware vendors. However,
system operation under off-nominal conditions increases the population of manifested errors compared to
the operation under nominal conditions. Changing the supply voltage, frequency or the DRAM refresh rate
may induce errors in different parts of the chip, i.e. within cores and memory subsystem. In depth
characterization and analysis of system’s behavior under nominal and scaled VFR conditions is of major
importance to finally provide a reliable, high performance and energy efficient system.

The insights that were revealed by this characterization step are valuable for many tasks and work packages
of the UniServer project. They have guided decisions concerning the development of dedicated programs to
stress the entire system in its operation limits under off-nominal VFR conditions. Moreover, the output of
running all these stress programs under off-nominal conditions will feed the D4.8, with all the necessary
insights about the failure model of caches and DRAM. The predictor module integrated with OS will be able
to identify the best combination of VFR values in order to ensure the efficient operation of the system in
terms of performance, energy and reliability (as presented in T4.4).

The goal of this deliverable is to present the results of the characterization for the on-chip cache memories of
different levels, as well as off-chip DRAM when operating beyond the nominal conditions in the X-Gene 2
platform, extending the findings of the D3.3. The features of the targeted platform were described in detail in
deliverable D3.1 “Definition of the UniServer Board”. Concerning the cores and the on-chip caches, a
versatile automated framework was developed for system-level voltage and frequency scaling
characterization of the Applied Micro’s X-Gene 2 micro-server family as was described in detail in D3.3. In
summary, the framework provides fine-grained information about the system’s state by monitoring any
abnormal behavior that may occur during under-scaled supply voltage and frequency conditions. In our
preliminary results using our framework presented in D3.3, we observed significant variations when we scale
the voltage and frequency running the same workload on different cores or running different workloads on
the same core. We also discussed all the related work in the literature concerning the characterization of the
caches and the impact of voltage noise in systems that operate under-off nominal voltage conditions. To
extend our finding in this deliverable, we present the results of the characterization on the X-Gene 2 server
with two new studies. In the first study, we use dedicated micro-viruses programs for fast characterization of

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 6

X-Gene 2 to reveal its safe operation margins, while in the second study we illustrate a statistical analysis
study to predict the safe operation voltage margins for each core of the chip.

Concerning the characterization of Dynamic Random-Access Memory (DRAM), we extend the experimental
framework on X-Gene 2 with a thermal testbed for conducting experiments under controlled DRAM
temperature. This allows us to understand DRAM behavior under the temperature conditions which may vary
in Cloud, but most importantly in Edge environments. In this deliverable, we analyze the number of
manifested errors and correlate how different data and access patterns affect the error rate when DRAM
operates under lowered supply voltage and relaxed refresh rates.

The document is organized in the following sections:

Section 2 presents the on-chip caches characterization. Using the characterization framework described
in detail in D3.3, we present two new studies concerning the efficient development of cache and pipeline
micro-viruses and a statistical analysis study that aims to predict the safe voltage operation limits of the
ARMv8 cores under off-nominal voltage and frequency conditions.

Section 3 presents the characterization of dynamic memories: It presents the efforts of creating the
experimental setups utilized during this period. Then the section presents the results of characterization for
applications with different data sizes and frequency accesses patterns and the techniques used to correlate
the number of errors for DRAM operating at the lowered supply voltage and relaxed refresh rates with
parameters of the system. Continuing, this section introduces a thermal framework to control the DRAM
temperature in order to understand the effects of data and frequency patterns. Lastly, we draw some
conclusions and observations across our experiments

Finally, conclusions are drawn in Section4: It summarizes new contributions reported in this deliverable
and discusses future work.

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 7

2. On-Chip Caches Characterization
The characterization results that were presented in D3.3 revealed important core-to-core, benchmark-to-
benchmark and chip-to-chip variations. To further extend the characterization results that were presented in
D3.3, in this deliverable we firstly illustrate the results of the characterization when three different chips (that
were provided to UoA, UCY and QUB partners) operate in scaled voltage and refresh rate conditions, while
they run the WSE DoSSensing application (Jammer Detector). Moreover, in this section we present two
studies related to the characterization process of the X-Gene 2. The first study presents the development of
micro-viruses that target all the levels of caches memory hierarchy (L1 Data and Instruction cache, unified L2
cache and L3 cache) as long as the pipeline, the ALUs and the FPUs of the ARMv8 cores of the X-Gene 2
chip in order to evaluate fast the safe operation limits of the chip. In the second study, we present a statistical
analysis methodology to predict the safe voltage operation margins of the ARMv8 cores using as input the
results from the characterization phase and the performance counters of the benchmarks during their entire
execution.

2.1. Characterization of the WSE DoSSensing – Jammer Detector

To characterize the Jammer Detector that is described in detail in D7.4 “Evaluation of the Prototype and
Comparison to State-of-the-Art in terms of Energy, Security and Determined Metrics of Success”, we used
the framework described in detail in this deliverable that gives us the opportunity to change the PMD
Voltage, the SoC Voltage, the DRAM Voltage and the DRAM refresh rate of the X-Gene 2 chips. Apart from
the errors, the SDCs and the Crashes we also extended the framework in order to check the QoS
requirements of the application.

To ensure the statistical significance of the delivered results, we launched 100 iterations of the
characterization campaign in order to detect the safe operations margins. Moreover, we repeated the
characterization experiments of the application in three different TTT chips of the three partners that are
involved in the characterization of the X-Gene 2 (UoA, UCY, QUB).

We separated the characterization of the Jammer Detector in four different steps:

• Identification of the safe operation margins when we reduce the voltage of the PMDs.
• Identification of the safe operation margins when we reduce the voltage of the SoC.
• Identification of the safe operation margins when we reduce the voltage and we increase the refresh

rate of the DRAM.
• Combination of the identified operation margins from the three previous steps concerning the PMDs

and the DRAM in order to measure the maximum power savings for the 100 iterations.

For all the aforementioned steps, we ensure the correct operation and the QoS of the application. After
identifying all the safe margins concerning the PMDs and the DRAM we measured the power savings in off-
nominal conditions compared to the power that is consumed using the nominal values.

Table 1 presents the nominal values and the safe operations limits (best cases observed for 100 iterations of
the experiment) that were identified for all the parameters and the three chips that were used for the
evaluation of the Jammer Detector application.

Table 1: Safe operating limits for each of the chip (best cases for 100 iterations).

Parameter Nominal UoA chip UCY
chip

QUB
chip

Vmin – PMD 980 mV 930 mV 910 mV 930 mV
Vmin – SoC	 950 mV	 920 mV	 870 mV	 900 mV	

Vmin – DRAM	 1500 mV	 1428 mV	 1428 mV	 1428 mV	
Refresh Rate min – DRAM	 64 ms	 2279 ms	 2279 ms	 2279 ms	

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 8

Figure 1 illustrates the average power savings that were measured for the chip located in UoA for 100
iterations of the experiments. We can observe 20.2% power savings in total compared to the nominal values.

Figure 1: Average power savings for 100 iterations of the experiment in UoA chip.

Figure 2 presents the total power savings that were measured for the chip located in QUB. We can observe
12.3% power savings in total.

Figure 2:Average power savings for 100 iterations of the experiment in QUB chip.

Finally, Figure 3 illustrates the total power savings that were measured for the chip located in UCY. We can
observe 12.5% power savings in total.

17,7

6,2
9

32,9

15,6

5,8
7,4

28,8

0

5

10

15

20

25

30

35

40

PMD SoC DRAM Total

Po
w

er
 (W

at
t)

Nominal

Undervolted

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 9

Figure 3: Average power savings for 100 iterations of the experiment in UCY chip.

2.2. Cache and Pipeline Micro-viruses

We developed diagnostic micro-viruses [1] to stress individually the fundamental microprocessor units
(caches, ALU, FPU) that define the safe voltage margins of the micro-processor. We don’t aim to reveal the
absolute Vmin (which can be identified by worst-case voltage noise stress programs) since in X-Gene 2
there is no direct way for on-chip voltage noise measurements. However, we provide strong evidence (IPC
and power measurements) that the micro-viruses are stressing the chips more intensively than the SPEC
programs.

For the construction of the diagnostic micro-viruses we followed two different principles for the tests that
target the caches and the pipeline, respectively. All diagnostic micro-viruses for the cases are small self-
checking pieces of code. This means that the micro-viruses check if a read value is the expected one or not.
There are previous studies for the construction of such tests, but they focus only on error detection (mainly
for soft errors), and to our knowledge this is the first work that is performed in actual microprocessor chips;
not in simulators or RTL level, which have no interference with the operating system and the challenges that
it provides. We first present a brief overview of the challenges for the development of such system-level
micro-viruses in a real hardware and the decisions we made in order to develop accurate self-checking tests
for the caches and the pipeline.

Caches: For all levels of caches the first goal of the developed micro-viruses is to flip all the bits of each
cache block from zero to one and vice versa. When the cache array is completely filled with the desired data,
the micro-virus read iteratively all the cache blocks while the chip operates in reduced voltage conditions and
identifies any corruptions of the written values, which cannot be detected by detection mechanisms of the
cache, such as the parity protection that can detect only odd number of flips.

All caches in X-Gene 2 have pseudo-LRU replacement policy. All our micro-viruses focusing on any cache
level need to “warm-up” the cache before the test begins, by iteratively accessing the desired data in order to
ensure that all the ways of the cache are completely filled and accessed with the micro-viruses’ desired
patterns. We experimentally observed through the performance monitoring counters that the safe number of
iterations that “warm-up” the cache with the desired data, before the checking phase begins, is log2(# of
ways) to guarantee that the cache is filled only with the data of the diagnostic micro-virus.

In order to validate the entire cache array, it is important to perform write/read operations in all of the bit cells.
For every single case, we allocate a memory chunk equal to the targeted cache size. As the storing of data is
performed in cache block granularity, we need to make sure that our data storage is block-aligned, otherwise
we will encounter undesirable block replacements that will not guarantee the complete utilization of the
cache array. Assume for example that the first word of the physical frame will be placed at the middle of the
cache block. This means that when the micro-virus fills the cache, practically, there will be half-block size
words that will replace a desired previously fetched block in the cache. Thus, if the cache blocks are N, the

17,5

7,8 7,1

32,4

15,5

7,2
5,7

28,4

0

5

10

15

20

25

30

35

40

PMD SoC DRAM Total

Po
w

er
 (W

at
t)

Nominal

Undervolted

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 10

blocks that are written in cache will be N+1 (meaning one cache block will get replaced), and thus, the self-
checking property may be jeopardized. To this end, for all cache-related micro-viruses we perform a check at
the beginning of the test to guarantee that the allocated array is cache aligned (to be block aligned
afterwards). Another factor that has to be considered in order to achieve full coverage of the cache array, is
the cache coloring. Unless the memory is a fully associative one (which is not the case of the ARMv8
microprocessors), every store operation is indexed at one cache block depending on its address. For
physically indexed memories, the physical address of the datum or instruction is used. However, because
the physical addresses are not known or accessible from the software layer, special precautions need to be
taken in order to avoid unnecessary replacements. To address this issue, we exploit a technique that is used
to improve cache performance, known as cache coloring. If the indexing range of the memory is larger than
the virtual page, 2 addresses with the same offset on different virtual pages are likely to conflict on the same
cache block (due to the size of L1 caches (32KB), the bits that index the cache occur in page offset, and
thus, there is no conflict; this is the case for L2 and L3 caches in our system). To avoid this situation, the
indexing range is separated in regions equal to the page size, known as colors. It is then enough to use
equal number of pages in each color to avoid conflicts. The easiest way to achieve this, is to allocate
contiguous physical address range, which is possible at the kernel level using the kmalloc() call. The
contiguous physical range will guarantee that all the data will be placed and fully occupy the cache, without
replacements or unoccupied blocks.

Another challenge that the micro-viruses need to take into consideration is the interference of the branch
predictors and the cache prefetchers. In our micro-viruses, the branch prediction mechanism (in particular
the branch mispredictions that can flush the entire pipeline) may ruin the self-checking property of the micro-
virus, by replacing or invalidating the necessary data or instruction patterns. Moreover, prefetching requests
can modify the pre-defined access patterns of the micro-virus’ execution. To eliminate these effects, the
memory access patterns of the micro-viruses are modelled using the stride based model for each of the
static load and stores of the micro-virus. Each of the static load and store in the workload walk a bounded
array of memory references with a constant stride, greater than the X-Gene 2’s prefetcher stride. In that way,
the cache-related micro-viruses are executed without the interference of the branch predictor or the
prefetcher. We validated this by leveraging the performance counters that measure the prefetch requests for
L1 and L2 cache and the mispredictions, and no micro-virus counts any event in the related counters.

Pipeline: For the pipeline, we developed dedicated benchmarks that stress: (i) the Floating-Point Unit (FPU),
(ii) the integer Arithmetic Logical Units (ALUs) and (iii) the entire pipeline using a combination of loads,
stores, branches, arithmetic and floating-point unit operations. The goal is to trigger the critical paths that
could possibly lead to an error during off-nominal operation voltage conditions.

Generally, for all micro-viruses, one primary thing that we need to take into consideration, is that due to the
fact that micro-viruses are executed in the real hardware, with operating system, we need to isolate all the
system’s tasks to a single core. Assume for example that we run the L1 data or instruction micro-virus in
Core 0. Each core has its own L1 cache, so we isolate all the system processes and interrupts in the Core 7,
and we assign the micro-virus to Core 0. To do this we use the sched_setaffinity() call of the Linux kernel to
set the process’ affinity. In such a way, we ensure that only the micro-virus is executed in the desired core
each time. We follow the same concept for all micro-viruses, except for L3 cache, because L3 is shared
among all cores, so a small noise from the system processes is unavoidable.

We developed all diagnostic micro-viruses in C language (except for L1 Instruction cache micro-virus, which
is ISA-dependent and is developed with a mix of C and ARMv8 assembly instructions). Moreover, the micro-
viruses (except for L1 instruction cache’s) check the microprocessor’s parameters (cache size, # of cache
ways, existence of prefetcher or not, page size, etc.) and adjust the micro-viruses code to the specific CPU.
This way, the micro-viruses can be executed in any microarchitecture and can easily adapted to different
ISAs. Note that the set of micro-viruses will be publically available.

Next, we discuss the implementation details of the micro-viruses for all cache levels (L1 Data Cache, L1
Instruction Cache, Unified L2 Cache, L3 Cache), the pipeline, the ALU and the FPU.

2.2.1. L1 Data Cache

For the first level data cache of each core, we allocated statically an array in memory with the same size as
the L1 data cache. As the L1 data cache is no-write allocate, after the first write of the desired pattern in all

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 11

the words of the structure we need to read them first, in order to bring all the blocks in the first level of data
cache. Otherwise, the blocks would remain in the L2 cache and we would have only write misses in the L2
cache. Moreover, due to the pseudo-LRU policy that is used in the L1 data cache, we read all the words of
the cache three consecutive times (log2(# of ways) = log28=3) before the test begins, in order to ensure that
all the blocks with the desired patterns are allocated in the first level data cache. With these steps, we
achieve 100% read hit in the L1 data cache during the execution of the L1D micro-virus in undervolting
conditions. The L1 Data micro-virus fills the L1 Data cache with three different patterns, each of which
corresponds to a different micro-virus test. These tests are the all-zeros, the all-ones, and the checkerboard
pattern. To enable the self-checking property of the micro-virus (correctness of execution is determined by
the micro-virus itself and not externally), we check if each fetched word is equal to the expected value (the
one stored before the test begins) at the end of the test.

2.2.2. L1 Instruction Cache

The concept behind the L1 Instruction Cache micro-virus is to flip all the bits of the instruction encoding in the
cache block from zero to one and vice versa. In the ARMv8 ISA there is no single pair of instructions that can
be employed to invert all 32 bits of an instruction word in the cache, so to achieve this we had to employ
multiple instructions. The instructions listed in Table 2 are able to flip all the bits in the instruction cache from
0 to 1 and vice versa according to the Instruction Encoding Section of the ARMv8 manual.

Each cache block of the L1 instruction cache is able to hold 16 instructions because each instruction is 32-bit
in ARMv8 and the L1 Instruction cache block size is 64 bytes. The size of each way of the L1 Instruction
Cache is 32KB / 8 = 4KB, and thus, it is equal to the page size which is 4KB. As a result, there should be no
conflict misses when accessing a code segment (see cache coloring previously mentioned) with size equal
to the L1 Instruction cache (the same argument holds also for the L1 Data Cache).

The method we guarantee the self-checking property in the L1 Instruction cache micro-virus is the following:
The L1 instruction cache array holds 8192 words (64 sets x 8 ways x 8 words in each cache block = 8192).
We use 8177 words to hold the instructions of our diagnostic micro-virus, and the remaining 15 instructions
(8177 + 15 = 8192) to compose the control logic of the self-checking property and the loop control. More
specifically, we execute iteratively 8177 instructions and at the end of this block of code we expect the
destination registers to hold a specific “signature” (the signature is the same for each iteration of the same
group of instructions, but different among different executed instructions). If this “signature” is distorted then
the micro-virus detects that an error occurred (for instance a bit flip in an immediate instruction resulted in the
addition of a different value) and records the location of the faulty instruction as well as the expected and the
faulty signature for further diagnosis. We iterate this code multiple times and after that we continue with the
next block of code.

As in the L1 Data cache micro-virus, due to the pseudo-LRU policy that is used also in the L1 Instruction
cache, we fetch all the instructions three consecutive times (log2(# of ways) = log28=3) before the test
begins, in order to ensure that all the blocks with the desired instruction patterns are allocated in the L1
instruction cache. With these steps, we achieve 100% read hit in the cache (and thus cache stressing) during
the undervolting campaign.

Table 2: ARMv8 Instructions used in the L1 Instruction micro-virus. The right column presents the encoding of
each instruction in bit granularity to demonstrate that all the bits in the cache block get flipped.

Instruction Encoding
add x28, x28, #0x1 1001 0001 00 0000 0000 0001 11100 11100
sub x3, x3, #0xffe 1101 0001 00 1111 1111 1110 00011 00011

madd x28, x28, x27, x27 1001 1011 00 0110 1101 1011 11100 11100
add x28, x28, x27, asr #2 1000 1011 10 0110 1100 0010 11100 11100
add w28, w28,w27,lsr #2 0000 1011 01 0110 1100 0010 11100 11100

nop 1101 0101 00 0000 1100 1000 00000 11111

bics x28, x28, x27 1110 1010 00 1110 1100 0000 11100 11100

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 12

2.2.3. Unified L2 Cache

The L2 cache is a 32-way associative PIPT cache with 128 sets; thus, the bits of the physical address that
determine the block placement in the L2 cache are bits [12:6] (as shown in Figure 4). Moreover, the page
size we rely on is 4KB and consequently the page offset consists of the 12 less significant bits of the physical
address. Accordingly, the most significant bit (bit 12) of the set index (the dotted square in Figure 4) is not a
part of the page offset. If this bit is equal to 1, then the block is placed in any set of the upper half of the
cache, and in the same manner, if this bit is equal to 0, the block is placed in a set of the lower half of the
cache. Bits [11:6] which are part of page/frame offset determine all the available sets for each individual half.

In order to guarantee the maximum block coverage (meaning to completely fill the L2 cache array), and thus
to fully stress the cache array, the L2 micro-virus should not depend on the MMU translations that may result
in increased conflict misses. The way to achieve this is by allocating memory that is not only virtually
contiguous (as with the standard C memory allocation functions used in user space), but also physically
contiguous by using the kmalloc() function (see cache coloring previously mentioned). The kmalloc() function
operates similarly to that of user-space's familiar memory allocation functions, with the main difference that
the region of physical memory allocated by kmalloc() is physically contiguous. This guarantees that in one
half of the allocated physical pages, the most significant bits of their set index are equal to one and the other
half are equal to zero.

Given that the replacement policy of the L2 cache is also pseudo-LRU, the L2 micro-virus needs to iteratively
access five times the allocated data array (log2(# of ways) = log232=5), to ensure that all the ways of each
set contain the correct pattern. Furthermore, due to the fact that the L1 data cache has write-through policy
and the L2 cache has write allocate policy, the stored data will reside in the L2 cache right after the initial
writes (there are no write backs). Another requirement for the L2 micro-virus is that it should access the data
only from the L2 cache during the test and not from the L1 data cache, to completely stress the former one.
We satisfy this requirement by using a stride access scheme for the array with a block stride of one block (8
words stride). Therefore, in the first iteration the L2 micro-virus accesses the first word of each block, in the
second iteration it accesses the second word of each block, and so on. Thus, it always misses the L1 Data
cache. By accessing the data using these strides, the L2 micro-virus also overcomes the prefetching
requests. Note that the L1 instruction cache can completely hold all the L2 diagnostic micro-virus
instructions, so the L2 cache holds only the data of our test.

To verify the above, we isolated all the system processes by forcing them to run in different cores from the
one that executes the L2 diagnostic micro-virus, by setting the system processes’ CPU affinity and interrupts
to a different core, and we measured the L1 and L2 accesses and misses after we have already “trained” the
pseudo-LRU with the initial accesses. We measure these micro-architectural events by leveraging the built-in
performance counters. The performance counters show that the L2 diagnostic micro-virus always misses the
L1 Data cache and always hits the L1 Instruction cache, and it hits the L2 cache in the majority of accesses.
Specifically, the L2 cache has 4096 blocks and the maximum number of block misses we observed was 32
at most for each execution of the test (meaning 99.2% coverage). In such a way, we verify that the L2 micro-
virus completely fills the L2 cache. The L2 micro-virus fills the L2 cache with three different patterns, each of
which corresponds to a different micro-virus test. These tests are the all-zeros, the all-ones, and the
checkerboard pattern. To enable the self-checking property into this micro-virus, at the end of the test we
check if each fetched word is equal to the expected value (the one stored before the test begins).

Figure 4: A 256KB 32-way set associative L2 cache.

Tag Set (=index) W B
38 13 12 6 5 2 1 0

TagV Data Line 0 D 7 6 5 … 2 1 0

Cache	Line

4726

TagV Data Line 1 D
TagV Data Line 2 D

TagV Data Line 126 D
TagV Data Line 127 D

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 13

2.2.4. L3 Cache

The L3 cache is a 32-way associative PIPT cache with 4096 sets and is organized in 32 banks; so, each
bank has 128 sets and 32 ways. Moreover, the bits of the physical address that determine the block
placement in the L3 cache are the bits [12:6] (for choosing the set in a particular bank) and the bits [19:15]
for choosing the correct bank. Based on the above, in order to fill the L3 cache we allocate physically
contiguous memory with kmalloc(). However, kmalloc() has an upper limit of 128 KB in older Linux kernels
and 4MB in newer kernels (like the one we are using; we use CentOS 7.3 with Linux kernel 4.3). This upper
limit is a function of the page size and the number of buddy system freelists (MAX_ORDER). The
workaround to this problem is to allocate two arrays with two calls to kmalloc() and each array’s size should
be half the size of the 8M L3 cache. The reason that this workaround will result in full block coverage in the
L3 cache is that 4MB chunks of physically contiguous memory gives us contiguously the 22 less significant
bits, while we need contiguously only the 20 less significant (for the set index and the bank index). Moreover,
we should highlight that the L3 cache behaves as a non-inclusive victim cache. In response to an L2 cache
miss from one of the PMDs, agents forward data directly to the L2 cache of the requestor, bypassing the L3
cache. Afterwards, if the corresponding fill replaces a block in the L2 cache, a write-back request is issued,
and the evicted block is allocated into the L3 cache. On a request that hits the L3 cache, the L3 cache
forwards the data and invalidates its copy, freeing up space for future evictions. Since data may be
forwarded directly from any L2 cache, without passing through the L3 cache, the behavior of the L3 cache
increases the effective caching capacity in the system.

Due to the pseudo-LRU policy, as in the L2, the L3 micro-virus is designed accordingly to perform five
sequential writes (log2(# of ways) = log232=5) to cover all the ways before the test begins, and the read
operations afterwards are performed by stride of 1 block (to bypass the L2 cache and the prefetcher, so the
micro-virus only hits the L3 cache and always misses the L1 and L2 caches). The L3 diagnostic micro-virus
fills the L3 cache with three different patterns, each of which corresponds to a different micro-virus test.
These tests are the all-zeros, the all-ones, and the checkerboard pattern. To enable the self-checking
property, at the end of the test we check if each fetched word is equal to the expected value (the one stored
before the test begins).

However, in contrast to the L2 diagnostic micro-virus, in the L3 micro-virus we do not have the necessary
tools to prove the complete coverage of the L3 cache due to the fact that there are no built-in performance
counters in X-Gene 2 that report the L3 accesses and misses. However, by using the events that correspond
to the L1 and L2 accesses, misses and write backs we check that all the requests from the L3 micro-virus
miss the L1 and L2 caches, and thus only hit the L3 cache. Finally, we should highlight that the shared
nature of the L3 cache forced us to try to minimize the number of the running daemons in the system in order
to reduce the noise in the L3 cache from their access to it.

2.2.5. ALU

X-Gene 2 features a 4-wide out-of-order superscalar microarchitecture. It has one integer scheduler and two
different integer pipelines: a Simple Integer pipeline, and a Simple+Complex Integer pipeline. The integer
scheduler can issue two integer operations per cycle; each of the other schedulers can issue one operation
per cycle (the integer scheduler can issue 2 simple integer operations per cycles; for instance, 2 additions, or
1 simple and 1 complex integer operation; for instance, 1 multiplication and 1 addition).

The execution units are fully pipelined for all operations, including multiplications and multiply-add
instructions. ALU operations are single-cycle. The fetch stage can bring up to 16 instructions (same size as a
cache block) per cycle. The fetch attempts to always bring up to 16 instructions from the same cache block
or by two adjacent cache blocks. If the fetch begins in the middle of a cache block (unaligned), the next
cache block will also be fetched in order to have 16 instructions available for further processing, and thus
there will be a block replacement on the Instruction Buffer. To this end, we use NOP instructions to ensure
that the first instruction of the execution block is block aligned, so that the whole cache block is located to the
instruction buffer each time. For the above microarchitecture, we developed the ALU self-testing micro-virus,
which avoids data and control hazards and iterates 1000 times over a block of 16 instructions (that resides in
the Instruction buffer, and thus the L1 instruction and data cache are not involved in the stress testing
process). After completing 1000 iterations, it checks the value of the registers involved in the calculations by
comparing them with the expected values. After reinitializing the values of the registers, we repeat the same
test 70M times, which is approximately 60 seconds of total execution (of course, the number of executions

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 14

and the overall time can be adjusted). Therefore, we execute code that resides in the instruction buffer for
1000 iterations of our loop and then we execute code that resides in 1 block of the cache after the end of
these 1000 iterations. Because the instructions are issued and categorized in groups of 4 (X-Gene 2 issues
4 instructions), and the integer scheduler can issue 2 of them per cycle we can’t achieve the theoretical
optimal IPC of 4 Instructions per Cycle only with Integer Operations. Furthermore, we try to have in each
group of 4 instructions, instructions that stress all the units of all the issue queues like the adder, the shifter
and multiplier. Specifically, the ALU micro-virus consists of 94% integer operations and 6% branches.

2.2.6. FPU

Aiming to heavily stress and diagnose the FPU, we perform a mix of diverse floating-point operations, by
avoiding data hazards (thus stalls) among the instructions and using different inputs to test as many bits and
combinations as possible. To implement the self-checking property of the micro-virus, we execute the
floating-point operations twice, with the same input registers and different result registers. If the destination
registers of these two same operations have different result, our self-test notifies that an error occurred
during the computations. For every iteration, the values of the registers (for all of the FPU operations) are
increased by a non-fixed stride that is based on the calculations that take place. The values in the registers
of each loop are distinct between them and between every loop. Moreover, we ensure that the first
instruction of the execution block is cache aligned (as in the ALU micro-virus), so the whole cache block is
located to the instruction buffer each time.

2.2.7. Pipeline

Apart from the dedicated benchmarks that stress independently the ALU and the FPU, we have also
constructed a micro-virus to stresses simultaneously all the issue queues of the pipeline. Between two
consecutive “heavy” (high activity) floating-point instructions of the FPU test (like the consecutive multply
add, or the fsqrt which follows the fdiv) we add a small iteration over 24 array elements of an integer array
and a floating-point array. To this end, during these iterations, the “costly” instructions such as multiply add
have more than enough cycles to calculate their result, while at the same time we perform load, store,
integer multiplication, exclusive or, subtractions and branches. All instructions and data of this micro-virus
are located in L1 cache in order to fetch them at the same cycle to avoid high cache access latency. As a
result, the “pipeline” micro-virus has a great variety of instructions which stress in parallel all integer and FP
units. This micro-virus consists of 65% integer operations and 23.1% floating point operations, while the rest
11.9% are branches.

2.2.8. Micro-viruses validation

In the previous section, we described the challenges and our solutions to the complex development process
of the micro-viruses and how we verified their coverage using the machine performance monitoring counters.
However, it is essential to validate the stress and utilization of the micro-viruses on the microprocessor. To
this end, we measure the IPC and power consumption for both micro-viruses and SPEC CPU2006 bench-
marks. Note that the micro-viruses were neither developed to provide power measurements nor performance
measurements. We present the IPC and power consumption measurements of the micro-viruses only to
verify that they sufficiently stress the targeted units. IPC and power consumption along with the data
footprints of the micro-viruses (complete coverage of the caches bit arrays) are highly accurate indicators of
the activity and utilization of a workload on a microprocessor. Figure 5 and Figure 6 present the IPC and
power consumption measurements, respectively, for both the micro-viruses and the SPEC CPU2006
benchmarks.

As shown in these figures, the proposed micro-viruses for fast voltage margins identification provide very
high IPC compared to most SPEC benchmarks on the target X-Gene 2 CPU. In addition, we assessed the
power consumption using the dedicated power sensors of the X-Gene 2 microprocessor (located in standby
power domain), to take accurate results for each workload. We performed measurements for two different
voltage values; at the nominal voltage (980mV) and at 920mV, which is a voltage step that all of the micro-
viruses and benchmarks can be reliably executed (without Silent Data Corruptions (SDCs), errors or
crashes). Figure 6 shows that the maximum and average power consumption of the micro-viruses are
comparable to the SPEC CPU2006. In the same figure, we can also see the differences concerning the
energy efficiency when operating below nominal voltage conditions, and this can strengthen the need for
identifying the pessimistic voltage margins of a microprocessor. As we can see, in the multi-core execution

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 15

we can achieve 12.6% energy savings (considering that the maximum TDP of X-Gene 2 is 35W), by
reducing the voltage 6.2% below nominal, where all of the three chips operate reliably.

Figure 5: IPC measurements for both micro-viruses (top) and SPEC CPU2006 benchmarks (bottom).

Figure 6: Power consumption measurements for both the micro-viruses and the SPEC CPU2006 benchmarks.
The graphs at the top show the power consumption at nominal voltage (980 mV), when running on one core

(left) and on all 8 cores concurrently (right). The bottom graphs show the power measurements when the
microprocessor operates at 920mV, in order to present the energy efficiency when operating below nominal

voltage conditions.

2.2.9. Experimental Evaluation

For the evaluation of the micro-viruses’ ability to reveal the Vmin of X-Gene 2 CPU chips and their cores, we
used three different chips: TTT, TFF, and TSS from the AppliedMicro’s (APM) X-Gene 2 micro-server family.

Using the I2C controller we decrease the voltage of the domains of the PMDs and the SoC at 5mV steps,
until the lowest voltage point (safe Vmin) before the occurrence of any error (corrected and uncorrected –
reported by the hardware ECC), SDC (Silent Data Corruption – output mismatch) or Crash. Due to the non-
deterministic behavior of a real machine (all of our experiments were performed on the actual X-Gene 2
chip), we repeat each experiment 10 times and we select the execution with the highest safe Vmin (the
worst-case scenario) to compare with the micro-viruses.

We experimentally obtained also the safe Vmin values of the 12 SPEC CPU2006 benchmarks on the three
X-Gene 2 chips (TTT, TFF, TSS), running the entire time-consuming undervolting experiment 10 times for
each benchmark. These experiments were performed during a period of 2 months on a single X-Gene 2
machine. We also ran our diagnostic micro-viruses, with the same setup for the 3 different chips, as for the
SPEC CPU2006 benchmarks. This part of our study focuses on:

2.14
1.95

1.67

1.08
0.86

0.61

0.12

1.20

0

0.5

1

1.5

2

2.5

IP
C

IPC of Micro-Viruses

1.65
1.27

0.98 0.95 0.87 0.83
0.50 0.30

IPC of SPEC CPU2006

13.8 12.8 12.2 12.1 12.2 12.0 12.0 11.9 11.8 11.7 11.7 11.7 11.5 11.5 11.5

0

5

10

15

20

25

30

35

Po
we

r (
W

at
ts

)

Single Core (980 mV)

12.9 11.4 11.4 10.5 10.5 10.4 10.4 10.4 10.4 10.2 10.0 10.1 10.0 9.9 9.7

0

5

10

15

20

25

30

35

Po
we

r (
W

at
ts

)

Single Core (920mV)

27.0
23.5 23.3

18.9
15.3 14.9 14.6 14.5 14.5 14.1 14 13.9 13.7 13.5 13.3

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Po
we

r (
W

at
ts

)

8 Cores (920mV)

31.4 30.4 30.4 29.0 28.6 28.4 28.4 27.2 26.8 26.0 25.9 24.9 24.8
22.8

20.6

0

5

10

15

20

25

30

35

Po
we

r (
W

at
ts

)

8 Cores (980mV)

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 16

1. the quantitative analysis of the safe Vmin for three significantly different chips of the same

architecture to expose the potential guard-bands of each chip,
2. the demonstration of the value of our diagnostic micro-viruses which can stress the individual

components, and reveal virtually the same voltage guardbands compared to benchmarks.

The voltage guardband for each program (benchmark or micro-virus) is defined as the safest voltage margin
between the nominal voltage of the microprocessor and its safe Vmin (where no ECC errors or any other
abnormal behavior occur).

As we discussed earlier, to expose these voltage margins among cores in the same chip and among the
three different chips by using the 12 SPEC CPU2006 benchmarks, we needed ~2 months for each chip. On
the contrary, the same experimentation by using the micro-viruses needs ~3 days, which can expose the
corresponding safe Vmin for each core. In Figure 7 and Figure 8 we notice that the micro-viruses provide the
same or higher Vmin than the benchmarks for 19 of the 24 cores (3 chips times 8 cores). There are a few
cases that benchmarks have higher Vmin in 5 cores (the difference between them is at most 5mV – 0.5%)
but in orders of magnitude shorter time. Such differences (5mV or even higher) can occur even among
consecutive runs of the same program, in the same voltage due to the non-deterministic behavior of the
actual hardware chip. This is why we run the benchmarks 10 times and present only the maximum safest
Vmin. For a significant number of programs (benchmarks and micro-viruses), we can see variations among
different cores and different chips. Figure 7 and Figure 8 represent the maxi-mum safe Vmin for each core
and chip among all the benchmarks (blue line) and all micro-viruses (orange line). Considering that the
nominal voltage in PMD voltage domain (where these experiments are executed) is 980mV, we can observe
that the Vmin values of the micro-viruses are very close to the corresponding safe Vmin provided by
benchmarks, but in most cases higher. The core-to-core and chip-to-chip relative variation among the three
chips are also revealed with the micro-viruses. Both the SPEC CPU2006 benchmarks and the micro-viruses
provide similar observations for core-to-core and chip- to-chip variation. For instance, in TTT and TFF chip,
cores 4 and 5 are the most robust cores. This property holds in the majority of programs but can be revealed
by the micro-viruses in several orders of magnitude shorter characterization time.

At the bottom-right diagram of Figure 8, we show the undervolting campaign in the SoC voltage domain
(which is the focus of the L3 cache micro-virus). In X-Gene 2 there are 2 different voltage domains: the PMD
and the SoC. The SoC voltage domain includes the L3 cache. Therefore, this figure presents the comparison
of the L3 diagnostic micro-virus with the 12 SPEC CPU 2006 benchmarks that were executed simultaneously
in all 8 cores (8 copies of the same benchmark) by reducing the voltage only in the SoC voltage domain. In
this figure, we also notice that in TTT/TFF the difference of Vmin between the benchmark with the maxi-
mum Vmin and the self-test is 5mV, while in TSS the micro-viruses reveal the Vmin at 20mV higher than the
benchmarks. Note that the nominal voltage for the SoC domain is 950mV.

Figure 7: Detailed comparison of Vmin between the 12 SPEC CPU2006 benchmarks and micro-viruses for the TSS chip.

880
885
890
895
900
905
910
915
920

Vi
ru

s
bz

ip
na

m
d

go
bm

k
de

al
II

po
vr

ay
hm

m
er

om
ne

tp
p

sj
en

g
as

ta
r

gc
c

so
pl

ex
lib

qu
an

tu
m

Vi
ru

s
as

ta
r

na
m

d
de

al
II

po
vr

ay
hm

m
er

sj
en

g
bz

ip
go

bm
k

om
ne

tp
p

gc
c

so
pl

ex
lib

qu
an

tu
m

Vi
ru

s
na

m
d

bz
ip

de
al

II
hm

m
er

gc
c

go
bm

k
so

pl
ex

po
vr

ay
sj

en
g

om
ne

tp
p

as
ta

r
lib

qu
an

tu
m

Vi
ru

s
de

al
II

po
vr

ay
sj

en
g

na
m

d
bz

ip
gc

c
go

bm
k

hm
m

er
om

ne
tp

p
so

pl
ex

as
ta

r
lib

qu
an

tu
m

Vi
ru

s
bz

ip
na

m
d

de
al

II
hm

m
er

om
ne

tp
p

po
vr

ay
go

bm
k

gc
c

so
pl

ex
sj

en
g

as
ta

r
lib

qu
an

tu
m

Vi
ru

s
bz

ip
na

m
d

om
ne

tp
p

de
al

II
po

vr
ay

hm
m

er
go

bm
k

gc
c

so
pl

ex
sj

en
g

as
ta

r
lib

qu
an

tu
m

Vi
ru

s
na

m
d

de
al

II
bz

ip
gc

c
go

bm
k

po
vr

ay
hm

m
er

lib
qu

an
tu

m
om

ne
tp

p
as

ta
r

sj
en

g
so

pl
ex

Vi
ru

s
bz

ip
de

al
II

gc
c

na
m

d
po

vr
ay

lib
qu

an
tu

m
om

ne
tp

p
go

bm
k

so
pl

ex
hm

m
er

sj
en

g
as

ta
r

Core 0 Core 1 Core 2 Core 3 Core 4 Core5 Core 6 Core 7

V
m

in
 (m

V
)

Vmin Average

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 17

By using the proposed micro-viruses, we can detect very accurately (divergences have short range, at most
5mV) the safe voltage margins for each chip and core, instead of running time-consuming benchmarks.
According to our experimental study, the micro-viruses reveal higher Vmin (meaning lower voltage margin) in
the majority of cores in the three chips we used. Specifically, 19 out of 24 in total cores, the micro-viruses
expose higher or the same safe Vmin compared to the SPEC CPU2006 benchmarks. For the specific
ARMv8 design, we point and discuss the core-to-core and chip-to-chip variation, which are important to
reduce the power consumption of the microprocessor.

Core-to-Core Variation: There are significant divergences among the cores due to process variation.
Process variation can affect transistor dimensions (length, width, oxide thick- ness etc.) which have direct
impact on the threshold voltage of a MOS device, and thus, on the guard-band of each core. We
demonstrate that although micro-viruses can reveal similar divergences as the benchmarks among the
different cores and chips, however, in most of the cases, micro-viruses expose lower divergences among
cores in contrast to time consuming SPEC CPU2006 benchmarks. As shown in Figure 7, our micro-viruses
reveal higher safe Vmin for all the cores than the benchmarks, and also, we notice that the workload-to-
workload differences are very high (up to 30mV). Therefore, due to the diversity of code execution of
benchmarks, it is difficult to choose one benchmark that provides the highest Vmin. Different benchmarks
provide significantly different Vmin at different cores in different chips. Therefore, it is necessary excessively
large number of different benchmarks to have a safe result concerning the voltage margins identification.
Thanks to micro-viruses, which fully stress the fundamental units of the microprocessor, cores’ guard-bands
can be safely determined (regarding the safe Vmin) at a very short time, and guide energy efficiency when
running typical applications.

Chip-to-Chip Variation: As Figure 8 presents for the TTT and TFF chips, PMD 2 (cores 4 and 5) is the most
robust PMD for all three chips (can tolerate up to 3.6% more undervolting compared to the most sensitive
cores). We can notice that (on average among all cores of the same chip) the TFF chip has lower Vmin
points than the TTT chip, in contrast to TSS, which has higher Vmin points than the other two chips, and
thus, can deliver smaller power savings.
Diagnosis: By using the diagnostic micro-viruses we can also determine if and where an error or a silent
data corruption (SDC) occurred. Through this component-focused stress process we have observed the
following:

1. SDCs occur when the pipeline gets stressed (ALU, FPU and Pipeline tests), and

Figure 8: Maximum Vmin among 12 SPEC CPU2z06 benchmarks and the proposed micro-viruses for TTT, TSS
and TFF in PMD domain. Rightmost at bottom shown the maximum Vmin of 12 SPEC CPU2006 benchmarks and
the proposed L3 micro-virus in SoC domain.

900 905 905

905 885 885
895 890

900 900

910

885 885

900 895

820

840

860

880

900

920

940

960

980

0 1 2 3 4 5 6 7

PM
D

 V
ol

ta
ge

 (m
V)

SPEC vs. Diagnostic Micro-Viruses (TTT)

SPEC Micro-Viruses

900
910

910 910

900 895

910

910

915 915 910 910 915

820

840

860

880

900

920

940

960

980

0 1 2 3 4 5 6 7

PM
D

 V
ol

ta
ge

 (m
V)

SPEC vs. Diagnostic Micro-Viruses (TSS)

SPEC Micro-Viruses

890 890 895

895
885 885

900

900

890

900

880 880

905

900

820

840

860

880

900

920

940

960

980

0 1 2 3 4 5 6 7

PM
D

 V
ol

ta
ge

 (m
V)

SPEC vs. Diagnostic Micro-Viruses (TFF)

SPEC Micro-Viruses

885 885
890

880 880

910

830

850

870

890

910

930

950

TTT TFF TSS

So
C

 V
ol

ta
ge

 (
m

V)

SPEC CPU2006 vs. L3 Diagnostic Micro-Virus

SPEC Diagnostic Micro-Virus

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 18

2. the cache bit-cells operate safely at higher voltages (the caches tests crash lower than the ALU and
FPU tests).

Both observations show that the X-Gene 2 is more susceptible to timing-path failures than to SRAM array
failures [2]. Previous studies on Intel Itanium have shown a large region of voltage values that contains only
ECC corrected errors during undervolting. By reducing the voltage on those chips, the number of ECC
corrected errors increases gradually for quite many voltage steps until it exposes the first abnormal behavior
(SDC/crash). Unlike these studies, a major finding of our analysis using the micro-viruses for ARMv8-
compliant multicore CPUs is that SDCs (derived from pipeline stressing using the ALU, FPU and Pipeline
micro-viruses) appear at higher voltage levels than corrected errors when cache arrays get stressed by
cache-related micro-viruses. We believe that the reason is that unlike other server-based CPUs (like
Itanium), X-Gene 2 does not deploy circuit-level techniques (Itanium performs continuous clock-path de-
skewing during dynamic operation [3]), and thereby, when the pipeline gets stressed, X-Gene 2 produces
SDCs due to timing-path failures

2.3. Statistical Analysis based on Characterization Results

To understand the behavior of the X-Gene 2 chip, we used the output from the characterization phase in a
statistical analysis scheme [4]. Statistical analysis methods are appealing to predict the safe operational
margins at the system level as they do not induce area overheads and they can be applied during
manufacturing or after the chips’ release to the market. Thus, we launched a comprehensive statistical
analysis of the behavior of ARMv8 64-bit cores that are part of the enterprise 8-core X-Gene 2 micro-server
family when they operate in scaled voltage conditions. Our prediction schemes that use real hardware
counters as input are based on linear regression models with several feature selection techniques that aim to
predict the safe voltage margins of any given workload when the cores operate in scaled conditions. Our
findings show that the power savings of operation above the safe Vmin can be up to 17.52% compared to
operation at nominal voltage or up to 20.28% when we use a more aggressive scheme that targets the
Severity metric (operation in unsafe regions beyond Vmin).

For our analysis, we used the linear regression model that can be easily calculated on hardware in contrast
to the more complex non-linear models, as it is able to provide high accuracy with relatively small population
of independent variables. The regression techniques calculate a function to predict a value of the dependent
variable from a set of independent variables that are called features. Assuming a set of x1, x2, x3, …, xN
independent variables and y the dependent variable, our analysis is based on the Ordinary Least Squares
(OLS) model that calculates a set of weights β (one for each variable x) and an error term e, according to the
formula:

𝑦" = 𝛽% + 𝛽'𝑥'"	+	𝛽*𝑥*"	 + ⋯ 	+	𝛽,𝑥,"	 + 	𝑒"																			(1)

In eq. (1), yi is the ith response value (i.e. Vmin or Severity), xji is the jth feature (e.g. hardware counter values)
evaluated at the ith observation, and ei is the ith statistical error. The goal of the model is to deliver the optimal
values of the coefficients β1, β2, β3, ..., βk so as to minimize the sum of the squares of the differences
between the predicted and the observed responses of the test dataset.

We used as inputs for our models the output from the characterization phase (Vmin and Severity values) and
the performance counters from the entire execution of the workloads in nominal voltage conditions using the
perf tool. For the implementation of all our models, we used the sklearn python libraries [5].

The X-Gene 2 provides 101 hardware counters that report all the major events concerning the memory
hierarchy (accesses and misses in all cache levels, TLB and page walks levels, prefetches, etc.), the core
pipeline (flushes, mispredictions, etc.) and the system (bus accesses, etc.). Before training the linear
regression model and in order to eliminate and select the most appropriate counters for it, we used three
different feature selection techniques:

1) F_regression: This approach is based on F-distribution and computes the correlation of each

independent feature X[:, i] with the dependent variable y, according to the following formula:

𝜌" =
𝑋 : , 𝑖 	− 	𝑚𝑒𝑎𝑛 𝑋 : , 𝑖 	 ∗ 	 (𝑦	 − 𝑚𝑒𝑎𝑛(𝑦))

𝑠𝑡𝑑 𝑋 : , 𝑖 	 ∗ 	𝑠𝑡𝑑(𝑦)
						(2)

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 19

Then, for each feature, the F-value is computed according to eq. (3), where n is the population of y value.
Finally, using the F-value, the associated p-value of each feature is determined [6].

𝐹" =
𝜌"*

1 −	𝜌"*
	∗ (𝑛 − 1)																										(3)

Subsequently, the F-values and p-values of all features are sorted and finally, the best k features with the
best values are selected and used as input from the linear regression model. Note that the lower the p-
value and the higher the F-value, the more efficient the model becomes when we include this feature in
the model.

2) Recursive Feature Elimination (RFE): The goal of RFE is to select features by recursively considering

smaller and smaller sets of features. First, the estimator is trained on the initial set of features, and weights
are assigned to them according to their correlation coefficient. Then, the least important features are
pruned from the current set of features and new weights are assigned to the remaining features. This
procedure is recursively repeated on the pruned set until the desired number of features is reached.

3) Polynomial Feature Transformation (Polynomial): To evaluate the correlation between two or more

features, we implemented polynomial feature transformation that generates a new feature matrix
consisting of all polynomial combinations of the features with degree less than or equal to a specified
degree. For example, if an input sample of features is two-dimensional and consists of two features [x1,
x2], the new polynomial feature matrix of degree-2 will be [1, x1, x2, x1

2, x1x2, x2
2]. In this study, we

implemented the polynomial feature transformation for all the cases targeting either the Vmin or the
Severity with a degree of correlation equal to 2. Our experiments revealed that a degree greater than 2
cannot provide better accuracy to our prediction models. After this transformation, we use either
f_regression or RFE feature selection to select the best features for our linear regression models.

The evaluation of our models’ accuracy targeting either the Vmin or the Severity, was done by: (a) using the
coefficient of determination (R2) that assesses how well a model explains and predicts the future outcomes;
also, it is indicative of the level of explained variability in the dataset. The larger the values of R2, the better fit
the model provides, while the best fit exists when R2 is equal to 1, (b) using the Root Mean Square Error
(RMSE) that represents the deviation between the predicted and the observed values (the smaller the RMSE
the more accurate the model is), (c) comparing our models with the baseline (naïve) model, which is the
average of the target values (Vmin or Severity) of the training dataset.

Depending on the target parameter (Vmin or Severity), we use different samples that correspond to
information vectors of the values of the dependent and the independent variables that were used to train and
test the models. All our training samples come from the characterization phase, in which we gradually reduce
the voltage of the chip in 5 mV steps and capture the dynamic events and the system state; in this way, our
models take into account the effects of voltage droops. All the independent variables of the samples used to
predict the Vmin consist of the performance counters from the entire execution of the workloads that were
normalized per kilo committed architectural instructions, while for the Severity they also include the voltage
values of each voltage reduction step. To avoid biasing the results, all the collected values of each
performance counter were normalized according to their minimum and maximum values, getting a final value
with range [0, 1].

For all the experiments, we split the samples into 80% training and 20% test datasets, while we also cross-
validated our models with different combinations of train and test datasets coming from different workloads to
detect overfitting (8000K combinations for each experiment). The total population of samples that were used
to predict the Vmin and the Severity is 320 and 800 respectively.

2.3.1. Experimental Results

We implemented our linear regression models with the three different feature selection algorithms targeting
both the Vmin and the Severity in the eight cores of the TTT X-Gene 2 chip running all the workloads from
SPEC CPU2006 suite with all their inputs (40 programs in total). In this section, we present only the most
representative and interesting cases of our analysis on the most robust (Core 4) and the most sensitive

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 20

(Core 0) cores. For all the cases, we evaluate the accuracy when we select from one up to ten most
important features to feed our linear model. Note that the addition of more features in the model does not
necessarily imply increase in the final accuracy due to the overfitting phenomenon when the model becomes
tailored to fit the random noise of the sample rather than reflecting the overall population. Finally, for the
population of features with the highest accuracy (the lowest RMSE), we present the final prediction model
equations according to equation (1).

Predicting Vmin of the Most Sensitive Core

In Figure 9, we illustrate the accuracy results (in terms of RMSE measured in mV) of all our models when we
target the Vmin of the most sensitive core. The black dotted line presents the accuracy of the baseline (naïve)
model which is the average values of the training dataset for prediction, while each set of bars represents the
accuracy of the different models by using different population of selected features for the prediction. By using
more than 4 features, all the methods are less accurate than the baseline model. Moreover, the linear
regression model that uses only RFE is less accurate compared to the baseline model for all the cases. The
linear regression that is accompanied by polynomial transformation with f_regression and up to 4 selected
features gives better accuracy than the other methods for all the cases. The best accuracy (RMSE equal to
5.0108mV) was observed by using the polynomial transformation with f_regression selection and only 4
selected polynomial features. Table 3 presents the final prediction model according to equation (1).
Moreover, the R2 that was measured for this prediction model is high (close to 0.75) indicating a good fit of
the model.

Our model finally delivers very high accuracy compared to the real values of our experiments (with only 5mV
inaccuracy that corresponds to a single voltage reduction step supported by the machine). The potential
power savings of using this scenario of prediction and adding a very small guardband of only 5mV (equal to
our predicted inaccuracy) are 11.87% compared to the case of using the very pessimistic nominal voltage
limit.

In general, the most important features that are selected by the models in Section 2.2.1 can be indicators of
large voltage droops (i.e. BTB mispredictions, decode stalls, exceptions, branches) and timing errors in the
pipeline of the CPUs (i.e. integer, FP operations). Therefore, they are intuitively well-correlated to the Vmin
values.

Figure 9: Accuracy of predicting the Vmin of the most sensitive core.

Table 3: Vmin Prediction Model of the Most Sensitive Core.

Hardware counters
used by the model

Prediction Model
(with 4 polynomial features)

L2 data prefetch request (L2_pref) 897.90 + (23.01* L2_pref)

5
.8

3
8

5
.4

0
3

5
.2

7
0

3 6
.3

3
0

5

6
.7

6
3

3

6
.1

1
4

4 7
.1

7
2

8

7
.6

6
9

1

7
.4

7
2

5

8
.0

2
0

3

6
.5

6
0

1

6
.9

9
4

5

6
.9

1
7

7
.1

6
3

7

7
.3

8
6

3

7
.8

6
2

9

7
.0

2

7
.2

6
6

9

8
.0

9
1

8

8
.1

7
9

4

5
.4

3
2

9

5
.2

7
7

7

5
.6

5
1

7

5
.0

2
4

2

5
.8

1
0

1

6
.2

7
2

4

1
0

.0
0

0
6

1
3

.3
3

3
1

1
4

.0
2

4
5

1
1

.6
0

8
4

5
.0

1
1

5

5
.0

4
5

0

5
.3

5
0

8

5
.0

1
0

8

8
.4

7
6

2

8
.8

3
2

0

1
1

.0
5

1
6 1

2
.7

9
1

8

1
8

.7
7

6
0

1
9

.7
1

6
9

4

6

8

10

12

14

16

18

20

1 feature 2 features 3 features 4 features 5 features 6 features 7 features 8 features 9 features 10 features

R
M

S
E

 (m
V

)

f_regression RFE polynomial with RFE polynomial with f_regression baseline

avg. baseline value 5.3871

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 21

BTB mispredictions (BTB_miss) + (54.20 * BTB_miss * FP)
– (7.15 * INT * L2_pref)

– (58.84 * FP * Indirect_br)
Floating point operation (FP)
Integer data processing (INT)
Indirect braches (Indirect_br)

Predicting Vmin of the Most Robust Core

The results of the accuracy of the different prediction models that target the Vmin of the most robust core are
illustrated in Figure 10. All the models with more than 4 or less than 3 features are less accurate than the
baseline model. The best accuracy is observed for linear regression after applying polynomial transformation
with f_regression and using only 3 polynomial features with RMSE equal to 5.0922mV (this model is
presented in Table 4). The R2 is again high (0.70), while the potential power savings of this model are
17.52% compared to the case of using the nominal value.

Figure 10: Accuracy of predicting the Vmin of the most robust core.

Table 4: Vmin Prediction Model of the Most Robust Core.

Hardware counters
used by the model

Prediction Model
(with 3 polynomial features)

L2 data prefetch request (L2_pref)
898.24 + (27.36 * L2_pref)
+ (61.24 * BTB_miss * FP)

– (8.96 * INT * L2_pref)

BTB mispredictions (BTB_miss)
Floating point operation (FP)
Integer data processing (INT)

Predicting Severity of the Most Sensitive Core

Figure 11 presents the results of the accuracy (in terms of RMSE that is measured in Severity units) when
we target the Severity of the most sensitive core. Both the linear regression with a simple f_regression
feature selection mechanism or the model in which we firstly apply a polynomial transformation and then we
select the best features with f_regression significantly outperform the baseline model for all the cases. The
simple RFE feature selection and the model with the polynomial transformation with RFE feature selection
are less accurate than the baseline model for all our experiments. The best accuracy (RMSE equal to 2.7223
Severity units) is observed for the model that uses f_regression feature selection with 3 features (this model
is presented in Table 5). The R2 for this model is equal to 0.92 indicating model’s efficiency. The potential
power savings of using this aggressive prediction scheme that targets the Severity including the measured
error are 16.59% compared to the case of using the nominal voltage value for protection. These savings
correspond to 39.76% more power savings instead of using the conservative prediction targeting the Vmin.

4 IEEE COMPUTER ARCHITECTURE LETTERS

pared to the case of using the nominal voltage value for protection.
These savings correspond to 39.76% more power savings instead
of using the conservative prediction targeting the Vmin.

Fig. 2. Accuracy of predicting the Vmin of the most robust core.

TABLE 3
VMIN PREDICTION MODEL OF THE MOST ROBUST CORE
Hardware counters
used by the model

Prediction Model
(with 3 polynomial features)

L2 data prefetch request (L2_pref)
898.24 + (27.36 * L2_pref)
+ (61.24 * BTB_miss * FP)
– (8.96 * INT * L2_pref)

BTB mispredictions (BTB_miss)
Floating point operation (FP)
Integer data processing (INT)

Fig. 3. Accuracy of predicting the Severity of the most sensitive core.

TABLE 4
SEVERITY PREDICTION MODEL OF THE MOST SENSITIVE CORE

Hardware counters
used by the model

Prediction Model
(with 3 features)

Voltage (Volt) 20.35 + (3.66 * Volt)
– (2.34 * L1D_tlb_write)

– (22.53 * dec_stalls)
L1 data TLB write (L1D_tlb_write)

Decode stalls (dec_stalls)

Predicting Severity of the Most Robust Core
Finally, Fig. 4 illustrates the results of the accuracy of the models
that predict the Severity values of the most robust core of the chip.
All the models apart from the case of polynomial transformation
with RFE feature selection outperform again the baseline predic-
tion (the difference is about 5.2 Severity units). The best accuracy
in terms of RMSE is equal to 2.5 Severity units and it is observed
for the linear regression model with RFE feature selection using 6
features (this model is presented in Table 5). The R2 for this model
is again very high (equal to 0.91) indicating the high efficiency of
the prediction model. Including the error, the potential power sav-
ings are 20.28% instead of using the nominal voltage value, while
these gains correspond to 15.75% more power savings compared
to the conservative case of using a scheme that targets the Vmin.

Fig. 4. Accuracy of predicting the Severity of the most robust core.

TABLE 5
SEVERITY PREDICTION MODEL OF THE MOST ROBUST CORE

Hardware counters
used by the model

Prediction Model
(with 6 features)

Voltage (Volt) 18.94 + (47.80 * Volt)
– (20.56 * excpt_taken)

+ (7.09 * L1I_miss)
– (3.92 * cond_br)

 – (29.50 * L1D_tlb_write)
– (22.11 * dec_stalls)

Exceptions taken (excpt_taken)
L1 instruction cache miss (L1I_miss)

Conditional branches (cond_br)
L1 data TLB write (L1D_tlb_write)

Decode stalls (dec_stalls)

5 CONCLUSION
We presented a comprehensive statistical analysis using linear
regression with different feature selection methods to accurately
predict the safe voltage operation margins of the cores of the en-
terprise X-Gene 2 micro-server ARMv8-based CPU running differ-
ent workloads from the SPEC CPU2006 suite. The power savings
targeting the Vmin can be up to 17.52% compared to the case of us-
ing the nominal voltage value or up to 20.28% when we use a more
aggressive scheme that targets the Severity instead of the Vmin.

REFERENCES
[1] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D.

Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power
pipeline based on circuit-level timing speculation,” in Proc. IEEE/ACM
Int. Symp. on Microarchitecture, 2003.

[2] P. I.-J. Chuang, et al., “Power supply noise in a 22nm z13™ micropro-
cessor”, in Proc. IEEE Int. Solid-State Circuits Conf., 2017.

[3] V. J. Reddi, M. S. Gupta, G. H. Holloway, G.-Y. Wei, M. D. Smith,�and
D. M. Brooks, “Voltage emergency prediction: Using signatures�to re-
duce operating margins,” in Proc. IEEE Int. Conf. on High-Performance
Computer Architecture, 2009.

[4] M. S. Gupta, V. J. Reddi, G. Holloway, G.-Y. Wai, and D. M. Brooks,
“An event-guided approach to reducing voltage noise in processors,”
in Proc. IEEE/ACM Design, Automation & Test in Europe Conf., 2009.

[5] A. Bacha, and R. Teodorescu, “Dynamic reduction of voltage margins
by leveraging on-chip ECC in Itanium II processors,” in Proc.
IEEE/ACM International Symposium on Computer Architecture, 2013. �

[6] A. Bacha, and R. Teodorescu, “Using ECC feedback to guide voltage
speculation in low-voltage processors,” in Proc. IEEE/ACM Int. Symp.
on Microarchitecture, 2014.

[7] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos,
P. Lawthers, S. Das, “Harnessing voltage margins for energy efficiency
in multicore CPUs,” in Proc. IEEE/ACM Int. Symp. on Microarch., 2017.

[8] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” in ACM
SIGARCH Comp. Architecture News, vol. 34, pp. 1-17, Sept. 2006.�

[9] Perf: Linux Profiling with Performance Counters. Retrieved 2017 from
https://perf.wiki.kernel.org/index.php/Main_Page.

[10] F. Pedregosa, G. Varoquaux, and A. Gramfort, “Scikit-learn: Machine
learning in Python,” in Machine Learning Research, vol. 12, pp. 2825-
2830, Oct. 2011.

[11] J. R. Lackritz, “Exact p Values for F and t Tests”, in The American Statis-
tician, Vol. 38, No. 4, Nov. 1984, pp. 312-314.

6
.4

9
1

3

6
.1

0
0

1

5
.9

3
9

2

6
.3

7
7

1
1

6
.4

3
1

4

8
.8

3
8

2

9
.3

9
9

5

9
.3

6
7

9
.4

4
3

1

1
1

.2
2

2
3

6
.7

7
4

4

6
.2

0
6

5

6
.4

8
2

6
.9

9
9

4

6
.3

3
9

6

7
.3

3
9

2 8
.9

3
3

9

9
.0

3
0

4

9
.9

9
4

6 1
1

.1
2

3

7
.8

9
3

5
.9

9
4

5
.5

3
3

5
.2

4
9

3 6
.5

2
9

5 7
.8

8
3

3 9
.0

6
5

3

9
.9

7
3

3

1
0

.1
0

3

1
3

.3
3

6
.3

2
1

2

6
.1

1
2

0

5
.0

9
2

2

5
.1

2
1

1

6
.1

2
2

7

6
.7

7
3

1

9
.5

4
4

2

9
.8

3
9

1

1
0

.1
4

4
9

1
3

.1
4

4
4

4

6

8

10

12

14

16

18

20

1 feature 2 features 3 features 4 features 5 features 6 features 7 features 8 features 9 features 10 features

R
M

S
E

 (m
V

)

f_regression RFE polynomial with RFE polynomial with f_regression baseline

avg. baseline value 5.8341

3.
08

05

2.
81

3

2.
72

23

2.
74

73

2.
77

25

2.
80

45

2.
83

66

2.
84

84

2.
87

79

2.
87

6

7.
96

25

8.
06

17

8.
15

36

8.
17

31

8.
25

2

8.
36

15

8.
43

71

8.
54

24

8.
63

19

8.
63

35

7.
89

9

7.
96

84

8.
04

05

8.
14

02

8.
22

92

8.
32

73

8.
42

6

8.
52

83

8.
63

19

8.
63

2

3.
08

06

3.
05

70

3.
03

87

3.
03

75

3.
05

25

3.
05

53

3.
09

57

3.
13

54

3.
12

18

2.
99

59

0

1

2

3

4

5

6

7

8

9

10

1 feature 2 features 3 features 4 features 5 features 6 features 7 features 8 features 9 features 10 features

R
M

SE
 (S

ev
er

ity
 u

ni
ts

)

f_regression RFE polynomial with RFE polynomial with f_regression baseline

avg. baseline value 7.9478

2.
55

18

2.
54

4

2.
55

23

2.
58

05

2.
57

62

2.
60

98

2.
60

65

2.
55

27

2.
58

52

2.
60

36

2.
55

18

2.
54

4

2.
55

22

2.
58

05

2.
57

01

2.
5

2.
52

25

2.
54

74

2.
57

15

2.
60

34

7.
75

7

7.
87

12

7.
93

03

8.
01

42

8.
10

21

8.
21

6

8.
32

25

8.
42

68

8.
52

64

8.
52

63

2.
55

18

2.
59

17

2.
61

82

2.
65

89

2.
67

63

2.
66

23

2.
67

07

2.
64

00

2.
64

26

2.
63

95

0

1

2

3

4

5

6

7

8

9

1 feature 2 features 3 features 4 features 5 features 6 features 7 features 8 features 9 features 10 features

R
M

SE
 (S

ev
er

ity
 u

ni
ts

)

f_regression RFE polynomial with RFE polynomial with f_regression baseline

avg. baseline value 7.6555

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 22

Figure 11: Accuracy of predicting the Severity of the most sensitive core.

Table 5: Severity Prediction Model of the Most Sensitive Core.

Hardware counters
used by the model

Prediction Model
(with 3 features)

Voltage (Volt) 20.35 + (3.66 * Volt)
– (2.34 * L1D_tlb_write)

– (22.53 * dec_stalls)
L1 data TLB write (L1D_tlb_write)

Decode stalls (dec_stalls)

Predicting Severity of the Most Robust Core

Finally, Figure 12 illustrates the results of the accuracy of the models that predict the Severity values of the
most robust core of the chip. All the models apart from the case of polynomial transformation with RFE
feature selection outperform again the baseline prediction (the difference is about 5.2 Severity units). The
best accuracy in terms of RMSE is equal to 2.5 Severity units for the linear regression model with RFE
feature selection using 6 features (this model is presented in Table 6). The R2 for this model is again very
high (equal to 0.91). Including the error, the potential power savings are 20.28% instead of using the nominal
voltage value, while these gains correspond to 15.75% more power savings compared to the conservative
case of using a scheme that targets the Vmin.

3.
08

05

2.
81

3

2.
72

23

2.
74

73

2.
77

25

2.
80

45

2.
83

66

2.
84

84

2.
87

79

2.
87

6

7.
96

25

8.
06

17

8.
15

36

8.
17

31

8.
25

2

8.
36

15

8.
43

71

8.
54

24

8.
63

19

8.
63

35

7.
89

9

7.
96

84

8.
04

05

8.
14

02

8.
22

92

8.
32

73

8.
42

6

8.
52

83

8.
63

19

8.
63

2

3.
08

06

3.
05

70

3.
03

87

3.
03

75

3.
05

25

3.
05

53

3.
09

57

3.
13

54

3.
12

18

2.
99

59

0

1

2

3

4

5

6

7

8

9

10

1 feature 2 features 3 features 4 features 5 features 6 features 7 features 8 features 9 features 10 features

R
M

SE
 (S

ev
er

ity
 u

ni
ts

)

f_regression RFE polynomial with RFE polynomial with f_regression baseline

avg. baseline value 7.9478

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 23

Figure 12: Accuracy of predicting the Severity of the most robust core.

Table 6: Severity Prediction Model of the Most Robust Core.

Hardware counters
used by the model

Prediction Model
(with 6 features)

Voltage (Volt)
18.94 + (47.80 * Volt)

– (20.56 * excpt_taken)
+ (7.09 * L1I_miss)
– (3.92 * cond_br)

 – (29.50 * L1D_tlb_write)
– (22.11 * dec_stalls)

Exceptions taken (excpt_taken)
L1 instruction cache miss (L1I_miss)

Conditional branches (cond_br)
L1 data TLB write (L1D_tlb_write)

Decode stalls (dec_stalls)

2.
55

18

2.
54

4

2.
55

23

2.
58

05

2.
57

62

2.
60

98

2.
60

65

2.
55

27

2.
58

52

2.
60

36

2.
55

18

2.
54

4

2.
55

22

2.
58

05

2.
57

01

2.
5

2.
52

25

2.
54

74

2.
57

15

2.
60

34

7.
75

7

7.
87

12

7.
93

03

8.
01

42

8.
10

21

8.
21

6

8.
32

25

8.
42

68

8.
52

64

8.
52

63

2.
55

18

2.
59

17

2.
61

82

2.
65

89

2.
67

63

2.
66

23

2.
67

07

2.
64

00

2.
64

26

2.
63

95

0

1

2

3

4

5

6

7

8

9

1 feature 2 features 3 features 4 features 5 features 6 features 7 features 8 features 9 features 10 features

R
M

SE
 (S

ev
er

ity
 u

ni
ts

)

f_regression RFE polynomial with RFE polynomial with f_regression baseline

avg. baseline value 7.6555

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 24

3. Characterization of Dynamic Memories
Apart from the cores and the on-chip caches, Dynamic Random-Access Memory (DRAM) is an important
subsystem of computing systems that has recently attracted a great amount of interest as a target for power
and performance optimizations. The density of DRAM devices which has been increasing steadily the past
few decades, coupled with our increased needs for main memory capacity makes DRAM a significant
contributor in the total power budget of contemporary computing systems [7]. Moreover, further scaling of
DRAM cells is accompanied by reduction of cell reliability and increased cell leakage leading to high refresh
rates, which in turn inflates power consumption [8] [9] [10] [11] [12]. As a result, any power optimizations
regarding DRAM devices has a significant impact [13].

DRAM power could be reduced through lowering the supplied voltage or relaxing DRAM refresh rate,
however this could compromise consistency of data stored in DRAM. This rate determines how often each
cell is refreshed, which is required to sustain data stored in DRAM due to its dynamic nature. Refresh
operation consumes power that is expected to be up to 50% of the total power consumption of the whole
DRAM power in next generations of density [14].

In this deliverable, we present the results of the experiments with DRAM operating at the lowered input
voltage and relaxed refresh rates. We discovered the major parameters affecting DRAM faults. In order to
extend the experiments, we have implemented a thermal controlled environment to test the memory under a
range of temperatures and realized a heterogeneous reliability framework on X-Gene 2.

3.1. Experimental Setup

Our experimental setup is based on the two X-Gene 2 validation boards that have been delivered to QUB by
APM. In D4.1, APM provided a brief description of the X-Gene 2 firmware and specification of i2c interfaces
to control the main operational parameters of various components inside the development boards, such as
supplied chip and DRAM voltages, refresh rate of DRAM and access to sensors. Furthermore, Linux kernel
of X-Gene 2 can report all DRAM and cache errors registered by ECC in syslog. The kernel receives
information about ECC errors from the firmware, and all errors are registered asynchronously. The kernel
reports information about source of an error, including DRAM, cache, MCU, bank, rank and so on. It also
provides information about the type of error: correctable (single-bit error which could be corrected by ECC)
and uncorrectable (double-bit errors which could be only registered by ECC).

3.1.1. Framework for thermal stressing

Temperature plays a major role in the reliability of the DRAMs as shown by previous research works [15] [16]
and validated by our experiments, so to avoid any effects of the variable temperature of the DIMMs, we need
to control the temperature of the server. Previous works have achieved this either by setting the machine in a
thermal oven [15] or having an element on each DIMM controlling the temperature [17].

Our approach is based on the second scheme, in order to control the temperature on the DIMMs, we have
developed a custom adapter that fits on top of each side of the DIMM. The control board (Figure 13) is 1U
rack-mountable that has a power supply, a Raspberry Pi 3, for network control of the system, and four Carel
ir33, two-channel temperature PID controllers that have NTC sensors and two solid state relays to control the
current on a resistive element that is mounted on the both sides of the DIMM. The adapter consists of a
resistive element and thermally conductive tape transferring the heat of the element to all the chips of the
DIMMs in uniform way. Figure 14 shows the X-Gene 2 board fitted with four DIMMs with the custom adapter
and the sensors.

We measure the temperature of the chips through the sensor embedded on the SPD and directly on the
heating elements. The controller of the elements is a PID controller, and we have observed a deviation from
the set temperature of +/-0.8 °C.

Figure 15 shows the X-Gene 2 server from above with a thermal photograph when on the board, the thermal
adapters do not operate. In this way, we can identify the hotspots around the board and observe the
difference of temperature of each DIMM.

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 25

Figure 13: Control board of the thermal framework.

Figure 14: X-Gene 2 with 4 DIMMs with thermal adapters, consisting of a resistive element and a thermal sensor.

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 26

Figure 15: Photograph of X-Gene 2 with annotation of components and equivalent thermal photograph

pinpointing the difference in temperature of DIMMs

3.1.2. Framework controlling allocations

As previously mentioned on the D3.3, we had explored relaxation of the refresh rate on a dual-socket Intel
server, in order to try an extended range of refresh rate. With that setup, we had the capability to split the
memory into two domains, one reliable with the nominal settings applied, while on the second one, we can
control the parameters of the memory and have variable reliability. This was possible because there were
two separate memory controllers.

The X-Gene 2 has two Memory Controller Bridges (MCBs) that each one controls two Memory Controller
Units (MCUs), for a total of four MCUs. Voltage can be controlled on the granularity of the MCBs, while
DRAM parameters, such as refresh rate, CAS latency, row precharge and active time, can be configured
independently on each MCU. This gives to the X-Gene 2, the ability to control on fine granularity and on
demand for each memory channel the parameters.

A limitation of the applicability of this type of control was the interleaving of memory across the MCBs and
MCUs. Interleaving is commonly used in memory controllers to utilize the maximum out of the total
bandwidth of the channels by spreading consecutive addresses and accesses across the memory channels.
This can cause issues, if you are setting different refresh rate in the MCUs, then the state of each MCU could
be different, for example one of the MCUs could refresh a line while the others are idle. APM provided
support for the firmware of the X-Gene 2 and enabled in the firmware the option to select the level of
interleaving in the memory system, having the option for enabled interleaving between MCBs and MCUs,
enabled interleaving only inside each MCB or disabling interleaving completely. This allow us to exploit the
fine-granularity of setting the parameters of each MCU independently.

In order to accommodate the changes of the interleaving and in consequence of the hardware in the
software layer, changes in the Linux kernel are needed. During this period APM also provided us with the
latest Linux kernel supporting the X-Gene, specifically the version 4.11. We have made modifications in this
version of the kernel and we can make zones of memory at the boot-up, for each MCU. We can then restrict
the kernel and the applications from using by the default memory from one of the zones, that MCU then
could be configured with settings that affect the reliability without affecting the critical parts of the system.
Figure 16 shows an example of the memory address of the two MCBs that is not interleaved, that can be
used for different parts of the application. Specifically, it is shown that the MCB 1 is configured with relaxed
parameters, and considered variably-reliable as errors could appear in this domain.

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 27

Figure 16: System setup for reliability domains realized in the X-Gene 2.

3.2. Experiments

For different experiments, we modify the refresh rate and the voltage independently, or as well as
simultaneously. The X-Gene 2 platform allows us to control refresh rate for each MCU, up to a maximum
refresh period of 2.283s, while the nominal one is 64ms. The platform also allows to configure voltage of
each MCB separately. The MCU0/1 (MCB0) and MCU2/3 (MCB1) could be operated at different voltage
levels. The nominal supply voltage for each MCB is 1.5V, while we found the minimum supply voltage to be
1.428V, as lower values of voltage make the system instantaneously non-functional.

We have experimented with a set of benchmarks, ranging from micro-benchmarks that are used typically in
DRAM characterization to real-world applications. Each one of those stresses the cores and DRAMs in a
different way and allows to study the influence of application specific characteristics i.e. access patterns and
used number of threads on DRAM reliability either directly or indirectly, by studying their impact on the
incurred SoC activity and DRAM temperature. In particular, we chose: Data pattern micro-benchmarks which
are designed to stress the retention time while exploiting the impact of neighbouring cells. As previous
researchers suggested, we have used the following patterns: all 0s, all 1s, checkerboard and random.
Rodinia Benchmark Suite represents a variety of HPC algorithms that are used for benchmarking parallel
computers. We chose to use backprop, nw, srad and kmeans to cover a range of domains, i.e. Machine
Learning, Bioinformatics, Image Processing and Data Mining. To evaluate how parallelism and processing
power affects the characterization, we have executed these benchmarks with 1 and 8 threads. As a real
workload, we are using the WSE DoSSensing, operating with 4 threads. And finally, CloudSuite [18] is
suitable workload for the X-Gene2 as ARM based servers target to substitute Intel servers in Cloud and
datacenter. To cover popular server workloads, we have ported three benchmarks from the CloudSuite to
ARMv8 which are being deployed through containers in Docker: Memcached [19], Graph Analytics [20] and
Web Search [21].

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 28

3.2.1. Results on nominal conditions of temperature

The initial purpose of our experiments is understanding if memory reliability operated under relaxed refresh
rate could be characterized with a set of micro-benchmarks. To follow this, we should identify all cells that
have small retention time, and thus are more prone to failures. We do this by executing data pattern micro-
benchmarks ensuring that we cover all memory available for the user space.

Figure 17Error! Reference source not found. shows the spatial and density distribution of errors between
different memory locations. Identification of memory locations where ECC discovered errors are provided on
the left, while the distribution of locations between MCUs is shown on the right. The darkness of the color
indicates the number of errors registered per 8 hours for a certain memory location, while the color identifies
the experiment, blue reflects an experiment with relaxed refresh rate, red for an experiment with
simultaneous relaxation of refresh and voltage, and if the errors were detected in both of the experiments, we
mark them with green color.

We observe that the random micro-benchmark identifies more locations than the other micro-benchmarks,
which is in agreement with the observations made also by Liu [15]. In addition, in all our experiments with the
server operated under the nominal conditions, we observe only single bit errors, which were corrected by the
available SECDED ECC. Based on such an analysis, we reach similar conclusions as existing studies [15],
refresh rate can be aggressively relaxed, in our case up to 43x, from 64 ms to 2.283 s. For those
experiments, the probability of erroneous 64-bit word is around 10-9, which can be handled by ECC, as long
as two bit errors do not happen on the same word.

To investigate if the above conclusion is accurate enough and the micro-benchmarks are able to reveal all
weak cells, we executed the four memory-intensive Rodinia benchmarks under relaxed parameters. In these
experiments. We execute a single threaded version and a parallel version with 8 threads to evaluate how
parallel access patterns affect the distribution of errors for each benchmark. In Figure 17Error! Reference
source not found., the results of the experimental campaign are evident that the single threaded version of
each benchmark triggers similar number of memory errors at the same locations as the ones observed when
executing the micro-benchmarks.

In addition, we observe that the parallel Rodinia benchmarks are able to stress and reveal more memory
locations triggering errors that have not been discovered by the micro-benchmarks and the single threaded
versions. This leads to a significant observation that the parallel versions of the benchmarks do affect the
system and the reliability, while significantly changing the spatial distribution of errors. Each benchmark has
some unique locations that are not activated by the other benchmarks. These results complement the ones
extracted from Rodinia, leading to the following observation. At the normal operating conditions, data pattern
micro-benchmarks are not as effective in detecting weak cells as real workloads when DRAM is operated
with relaxed refresh rate.

We experimentally identified the lowest operating DRAM supply voltage at 1.428 V after which most probably
the circuitry of DRAM stops working. This voltage level is higher than the minimum supply voltage of DIMM
specification [22]. In Figure 17Error! Reference source not found., we can observe how the spatial and
density distribution of errors differs for the experiment under relaxed refresh rate and voltage. When we also
lower the voltage, ECC reports errors at locations that have not been discovered before. We clearly see that
if we lower the supply voltage while having relaxed refresh rate, it significantly increases dispersion of error
locations. We suggest that this experiment manifests more errors due to cells which fail being less charged
under lowered voltage.

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 29

Figure 17: Spatial and density distribution of errors between cells for memory operated with relaxed refresh only

(blue), relaxed refresh and lowered supply voltage (red) and if the error occurred in both scenarios (green).

Figure 18 shows the same spatial and density distribution of errors for memory operated with relaxed refresh
rate and lowered supply voltage comparing the CloudSuite benchmarks and the micro-benchmarks. It is
obvious that the number of errors located while executing the benchmarks are much higher than previously
discovered by the micro-benchmarks or the Rodinia. As it is not yet clear why the different benchmarks are
able to identify more locations than the micro-benchmarks, we continued our research trying to identify the
parameters that are affecting the reliability of the whole system when operating under a real hardware
platform and realistic workloads.

Figure 18: Spatial and density distribution of errors between cells for memory operated with relaxed refresh and

lowered supply voltage.

One significant finding is that the WSE DoSSensing application do not excite the memory subsystem and we
do not observe any correctable error during the experiments relaxing the refresh rate or both relaxing the
refresh rate and the supply voltage. This could be explained based on the data from the next Section, where
we try to identify the application parameters that are affecting the reliability of DRAM.

3.2.2. Performance indicators and memory access patterns

The difference in the distribution of errors, that was found previously in D3.3 and in the previous Section,
may be related to benchmark characteristics. To explore the impact of the characteristics among
benchmarks, such as data and frequency memory access patterns, and other performance characteristics,
such as IPC and the CPU utilization, on the distribution of errors, we collect statistics for the performance
indicators denoted in using perf tool. Particularly, we investigate the correlation between the indicators, the
total number of memory errors and the number of unique error locations reported for our experiments with
refresh rate and voltage using the Spearman's rank correlation coefficient which characterizes the monotonic
relationship between two variables. Table 7 shows the correlation coefficient r, which denotes the strength
and direction of the correlation, and ρ-value for a hypothesis test whose null hypothesis (H0) is that two sets
of data are not correlated, i.e. the probability that the variables are not correlated.

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 30

There is no evidence of the correlation between the performance indicators reflecting memory access
patterns and the number of errors or the number of unique error locations. However, we found that this
correlation is very strong for the CPU utilization indicator: ρ-value for the total number of errors is 0.0003 and
0.052 for the number of unique error locations (see Table 7). Nonetheless, it is not clear why the correlation
is observed only for the CPU utilization but not for other performance parameters.

Table 7: Spearman's rank correlation coefficient and ρ-value for various performance indicators.

Event Relaxed Refresh Rate Lowered Voltage
Pattern Number of errors Number of

unique error
locations

Number
of errors

Number of
unique error

locations
	 r	 Ρ	 r	 ρ	 r	 ρ	 r	 ρ	
IPC		 0.333	 0.318	 0.257	 0.445	 0.501	 0.116	 0.065	 0.849	
L1	read		 0.287	 0.392	 0.166	 0.627	 0.469	 0.145	 0.014	 0.967	
L1	write		 0.187	 0.582	 0.078	 0.819	 0.219	 0.518	 -0.182	 0.592	
L1	accesses		 0.305	 0.361	 0.221	 0.514	 0.46	 0.154	 -0.019	 0.957	
L2	read		 0.187	 0.582	 0.156	 0.646	 -0.137	 0.689	 0.154	 0.651	
L2	write		 0.196	 0.564	 0.087	 0.798	 0.21	 0.536	 -0.173	 0.612	
L2	accesses		 0.333	 0.318	 0.257	 0.445	 0.501	 0.116	 0.065	 0.849	
Mem	read		 0.068	 0.842	 0.17	 0.617	 -0.21	 0.536	 0.252	 0.455	
Mem	write		 -0.159	 0.64	 -0.097	 0.778	 -0.383	 0.245	 0.089	 0.796	
Mem	accesses		 -0.064	 0.852	 0.041	 0.904	 -0.301	 0.369	 0.182	 0.592	
CPU	utilization	 0.69	 0.019	 0.882	 0.0003	 0.506	 0.112	 0.598	 0.052	

On top of the hardware counters of the application, it is already known that the temperature of DIMMs affects
DRAM reliability and thus the spatial and density distribution of errors. To investigate this, we have measured
the temperature by using on-board sensors provided for each DIMM, while having the server on a typical
server rack with forced ambient temperature of 18°C without the thermal adapters.

Figure 19: Average temperature of the core and each DIMM across the duration of execution of the benchmark.

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 31

The top part of Figure 19Error! Reference source not found. shows the average temperature of the SoC
for the period of the 8-hour experiments with 95% confidence intervals and the bottom the corresponding
average temperatures for each DIMM. The highest temperature averaged over all DIMMs was measured for
the graph-analytics benchmark which also incurred the highest dispersion of error locations in memory
during our experiments under relaxed refresh rate and voltage as explained in the previous Section. Further
analysis of the correlation between the temperature and the number of errors can be seen on Table 8,
presenting the Spearman’s rank correlation.

Table 8: Spearman's rank correlation coefficient and ρ-value for DRAM and SoC temperatures.

Event Relaxed Refresh Rate Lowered Voltage
 Number of

errors
Number of unique

error locations
Number of

errors
Number of unique

error locations
	 r	 ρ	 r	 ρ	 r	 ρ	 r	 ρ	
SoC	temperature	 0.232	 0.492	 0.437	 0.1792	 0.592	 0.055	 0.714	 0.0137	
DRAM	temperature		 0.601	 0.050	 0.763	 0.0063	 0.378	 0.252	 0.825	 0.018	

Note also that in our experiments, MCU0 was found to have the highest temperature, which explains the fact
that the majority of errors took place in MCU0. Figure 20 shows the spatial and density distribution of the
errors between MCUs and ranks when we relax the refresh rate and lower the voltage in the case of Rodinia
benchmarks, single- multi- threaded and the CloudSuite benchmarks. In Figure 20 we present the
distribution as a polar plot where θ-axis specifies MCUs and ranks, while ρ-axis reflects the number of errors.

 .
Figure 20: Distribution of the number of errors across each DIMM and rank.

i) Rodinia single-thre aded, ii) Rodinia multi-threaded, iii) CloudSuite.

3.2.3. Results with thermal stressing framework

As it is obvious from the previous experiments that the reliability of the machine is heavily affected by the
temperature, we continue on with experiments on the thermal framework. The DRAM temperature across
different benchmarks vary due to the correlation with the workload characteristics and SoC temperature as
shown on the previous section. It is important to test the DIMMs under a range of temperatures, simulating
different ambient temperatures as the characterization needs to be able to identify critical conditions. Micro-
server at the Edge of Cloud should be able to sustain operation under non-ideal conditions so it is needed to
characterize their reliability on the extreme margins.

Furthermore, working with fixed temperatures of the DIMMs will help in identifying the data and frequency
patterns of the benchmark that contribute in having more errors while avoiding any indirect effect of the
benchmarks, such as the CPU utilization, on the temperature of the DIMMs. We are using the thermal
framework described in Section 3.1.1 for characterization of the X-Gene 2 at fixed temperatures for the
DIMMs.

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 32

We are starting the characterization with the WSE DoSSensing application, we are executing it for 400
executions with four parallel instances, under controlled temperature of 40, 50, 60 and 70 °C and we observe
the correctable errors reported by the ECC as shown in the Table 9. Furthermore, when we analyse the
number of unique weak cells across the duration of the experiment, distinguishing errors in 400 runs (Table
9Error! Reference source not found.), we can clearly see that the majority of the errors occur in the first
part of the application.

Generalizing this based on extended experiments with multiday executions, we observe that in the first 25%
of the application’s execution duration, we discover more than 80% of the total weak cells. As it will be
described in more detail in one of the next Sections.

Table 9: Testing WSE DoSSensing under variable temperature.

Temperature (°C) Total Number of Errors Number of Unique Errors
40 4 4
50 1119 13
60 36793 653
70 313953 7010

Figure 21: Unique weak cells across the duration of the experiment.

Table 10 shows the distribution of the unique weak cell locations that were discovered and corrected by ECC
during the experiments of the WSE DoSSensing benchmark at 70°C. For the reported errors, we have
experiments with combined both relaxed refresh rate and lowered supply voltage.

Table 10: Distribution of errors in different device levels.

Event Number of Unique Weak Cell Location per device (DIMM/rank/bank) Max difference
(%)

Across	DIMMs	 1626	 2385	 1453	 1546	 39.07	%	
Across	Ranks	 3411	 3599	 5.22	%	
Across	Banks	 796	 922	 884	 957	 852	 839	 817	 943	 15.58	%	

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 33

Figure 22: Distribution of errors across the duration of experiments of 2 hours for relaxed refresh rate and

voltage under an enforced DRAM temperature of 50°C and 60°C.

Moving on with the micro-benchmarks, Rodinia benchmarks and the CloudSuite, Figure 22 shows the results
of the discovered correctable ECC errors for experiments of two hours. The experiments were conducted in
shorter duration based on the findings of a next Section and because the restrictive nature that it would time
months of machine time to execute the full experiments in many different temperatures and parameter
settings of refresh and voltage. Form the data, we observe that it is clear that the random micro-benchmark
is the best at discovering the weak cells location as was previously reported in the [15] when the conditions
of temperature are controlled and not affected by the CPU utilization of the benchmark.

One other observation that could made is that for different temperatures the order that benchmarks do rank
based on the number of weak cells discovered is not the same which could be affected by other parameters.

It is interesting to see that across our experiments with real-workloads, we show that an increase of 10°C on
the DIMMs leads to an order of magnitude increase in the total number of errors and the number of unique
weak cells discovered. This is according to the findings of other work [15] that their experiments are based
on microbenchmarks alone.

Similarly to the nominal conditions of temperatures, lowering only the voltage of the DRAM do not produce
much errors, in the order of tens, and could be considered negligible compared to the hundreds of unique
locations at 50°C and thousands at 60°C, however in the experiments where the lowered supply voltage is
combined with relaxed refresh the behaviour of the manifested errors gets affected.

3.2.4. Optimization of the experiment duration

One of the targets in our research is to investigate how much time is required to characterize reliability of
DRAM operated under relaxed refresh rate and lowered supply voltage for a specific benchmark. To achieve
a good coverage of weak cells [16] and high confidence for our results, we run each benchmark for 8 hours
in our initial characterization. We choose this period of testing to make our results comparable with [16]
where authors use 1000 rounds in their micro-benchmarks which correspond to 8 hours of running of these
micro-benchmarks on the APM platform. We run Rodinia and CloudSuite benchmarks in a loop until the total
execution time for each benchmark is 8 hours.

To reduce the total time of the experiments, we analyse the distribution of the discovered error locations in
time to find the optimal trade-off between the number of discovered distinct error locations and running time
for each benchmark. Figure 23-a demonstrates how the total number of distinct error locations discovered
using all running benchmarks changes with time of refresh rate experiments. Particularly, the left y-axis
shows the percentage of distinct error locations discovered from the beginning of experiments up to a certain
moment, t, accumulated over all benchmarks, i.e.

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟IJKLM"JNOM

%

𝑁𝑢𝑚𝑏𝑒𝑟IJKLM"JNOPQJRSO
%

While the right y-axis shows the percentage of distinct error locations discovered for a certain period of time
[t, t+10minutes] accumulated over all benchmarks, i.e.

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 34

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒IJKLM"JNO 𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟IJKLM"JNOMV'%W"NRMXO

%

𝑁𝑢𝑚𝑏𝑒𝑟IJKLM"JNOPQJRSO
%

Figure 23Error! Reference source not found.-b depicts the same statistics for our experiments with relaxed
refresh and voltage. We see that benchmarks cover about 80% (84.27% for experiments with relaxed refresh
and 76.26% for experiments with relaxed both) of error locations for 120 minutes, which is 25% of the total
time of one application run. Moreover, in both figures we see that 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒IJKLM"JNO 𝑡 does not exceed 3%
after running benchmarks for 120 minutes. Following these results, we reduce the total time of all
experiments to 2 hours and presumably cover about 80% of all error locations which may be discovered 8
hours of these experiments.

Figure 23: Coverage of microbenchmark across the duration of the experiments for a) refresh rate and voltage,

and b) refresh rate only.

3.2.5. Effectiveness of benchmarks

We can compare the effectiveness in discovering the weak cells of each benchmarks based on the number
of locations of weak cells discovered. We accumulate the discovered locations of weak cells from the
experiments in a specific temperature of all the application and for each application we calculate the
percentage of the total that are discovered by the application. The results about the random micro-
benchmark in Figure 24 show that the coverage compared to the total number of locations for all the
benchmarks is considerably high at more than 80% of the total locations. So, it is adequate to cover the
majority of the locations without having to run the experiments with the rest of the benchmarks.

Figure 24: Coverage of the total locations of the errors discovered by each application at two temperatures.

3.2.6. Effectiveness of existing Error Correcting Codes (ECC)

During our experiments, ECC is activated for detecting and correcting of the errors, allowing us to evaluate
also its efficacy as an error mitigation mechanism. SLIMpro monitors the SoC and reports ECC errors

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 35

detected by hardware to the Linux kernel through delivering an asynchronous message via an i2c mailbox
interrupt. The SLIMpro reports to the kernel: the source of an error at the level of the MCU, rank/bank, row
and column which point to a word in memory where the error has been detected.

The implementation of ECC in the server is Single Error Correction, Double Error Detection (SECDED), as
the name points, ECC can correct one bit-errors and detect two bit-errors. However, if we have more than
two errors in a word, the error could occur as Silent Data Corruption (SDC) which are not detected by the
ECC and may silently propagate to the application execution. To be able to detect those, we compare the
output of each execution with a golden reference output of an execution when DRAM was operated at the
nominal conditions for the Rodinia benchmarks, while for the CloudSuite, we implement a similar approach
on the client side, validating the received data compared to a golden output. For the micro-benchmarks, we
can measure the exact number of errors that manifested as SDCs.

Our results indicate that SECDED ECC that is anyway available in server-grade DRAMs, can help maintain
the DRAM reliability high even under relaxed refresh rate and voltage and help to address the varying weak
cells across applications. In fact, in all our experiments with all the benchmarks discussed above, we
discovered only one application which trigger an uncorrectable error on a specific set of DIMMs and high
temperature (70°C) close to the maximum allowed by the DRAM DIMM, while all other reported errors are
only single bit-errors, which were all corrected by ECC, even when DIMMs were operated under a high
temperature, up to 60°C. Note that we also have not discovered any SDCs when running the benchmarks.
Nonetheless, there is a possibility that a specific combination of DIMMs, temperature and benchmarks could
trigger uncorrectable errors and system failures.

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 36

4. Conclusions and Future Research
This deliverable presents the results of memory subsystem characterization for the APM’s X-Gene 2 micro-
server operating under scaled voltage and refresh rate parameters. Firstly, we present two new studies
concerning development of efficient cache and pipeline micro-viruses to identify safe operation margins for
the server and a statistical analysis that aims to predict safe voltage operation limits for the ARMv8 cores.
Secondly, we demonstrate a framework to identify system level parameters which may affect DRAM
reliability when running selected applications. By building the correlation between intrinsic and extrinsic
parameters of the system and DRAM error behavior, we identify program inherent features which have a
significant impact on errors in DRAM operating under scaled supply voltage and refresh rate. Finally, we
explore the necessary testing duration to ensure that DRAM operates reliably under discovered supply
voltage and refresh rate levels.

The output of this deliverable provides the necessary inputs and insights for WP4 to build the prediction
model which will be presented in D4.8.

The next steps on the task T3.3 regarding the characterization of memory subsystem include:

• Finalization of the unified characterization framework on D3.7 “Final Evaluation of Cores, Caches
and Dynamic Memories”.

• Experiments with the rest of applications provided by the project partners.
• Extension of the system level parameter list with new parameters which may affect DRAM and chip

reliability.

In the final year of the project, we will continue the characterization process using different chips and apply
the same characterization routines to the X-Gene 3 micro-server, which contains the latest generation of 64-
bit ARM cores and DDR4 memories.

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 37

5. References

[1] G. Papadimitriou, A. Chatzidimitriou, M. Kaliorakis, Y. Vastakis, D. Gizopoulos, "Micro-Viruses for Fast

System-Level Voltage Margins Characterization in Multicore CPUs," in IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2018.

[2] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos, P. Lawthers, S. Das, "Harnessing
Voltage Margins for Energy Efficiency in Multicore CPUs," in IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2017.

[3] R. J. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer, P. Gronowski, T. Grutkowski, "A 32nm 3.1
Billion Transistor 12-Wide-Issue Itanium® Processor for Mission-Critical Servers," in IEEE International
Solid-State Circuits Conference (ISSCC), 2011.

[4] M. Kaliorakis, A. Chatzidimitriou, G. Papadimitriou, D. Gizopoulos, "Statistical Analysis of Multicore
CPUs Operation in Scaled Voltage Conditions," in IEEE Computer Architecture Letters, 2018.

[5] F. Pedregosa, et al., "Scikit-learn: Machine learning in Python," in Machine Learning Research, vol. 12,
pp. 2825-2830, 2011.

[6] J. R. Lackritz, "Exact p Values for F and t Tests," in The American Statistician, vol. 38, pp. 312-314,
1984.

[7] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T.W. Keller, "Energy management for
commercial servers," in Computer Journal, Volume 36, Issue 12, December 2003.

[8] Atwood, G., "Current and emerging memory technology landscape," in Flash Memory Summit.
[9] U. Kang, H. Soo Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J.S. Cho, "Co-architecting

controllers and dram to enhance dram process scaling".
[10] Hong, S., "Memory technology trend and future challenges," in International Electron Devices Meeting

(IEDM), 2010.
[11] Kim, K., "Future memory technology: challenges and opportunities," in International Symposium on VLSI

Technology, Systems and Applications (VLSI-TSA), 2008.
[12] J. A. Mandelman, R.H. Dennard, G.B. Bronner, J.K. DeBrosse, R. Divakaruni, Y. Li, and C.J. Radens,

"Challenges and future directions for the scaling of dynamic random-access memory (dram)," in IBM
Journal of Research and Development, Volume 46, Issue 2-3, 2002.

[13] O. Mutlu, and L. Subramanian, "Research problems and opportunities in memory systems," in
International Journal in Supercomputing Frontiers and Innovations, Volume 1, Issue 3, 2014.

[14] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, "RAIDR: Retention-aware intelligent dram refresh," in 39th
International Symposium on Computer Architecture (ISCA), 2012.

[15] Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, "An Experimental Study of Data
Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms," in
In Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA ’13), 2013.

[16] Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa R. Alameldeen, Chris Wilkerson,and Onur Mutlu, "The
Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental
Study," in SIGMETRICS Perform. Eval. Rev. 42, 2014.

[17] Matthias Jung, Deepak M. Mathew, Carl Christian Rheinländer, Christian Weis, Norbert Wehn, "A
Platform to Analyze DDR3 DRAM's Power and Retention Time," in IEEE Design & Test 34(4): 52-59,
2017.

[18] Tapti Palit, Yongming Shen, and Michael Ferdman, "Demystifying Cloud Benchmarking," in IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), 2016.

[19] Fitzpatrick, Brad, "Distributed Caching with Memcached," in Linux J. 2004, 2004.
[20] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave,

Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph
Gonzalez, Scott Shenker, and Ion Stoica, "Apache Spark: A Unifed Engine for Big Data Processing," in
Commun. ACM 59, 11 (Oct. 2016), 2016.

[21] David Smiley, Eric Pugh, Kranti Parisa, and Matt Mitchell, "Apache Solr enterprise search server," in
Packt Publishing Ltd., 2015.

[22] Micron Technology, "DDR3 SDRAM UDIMM - MT18JSF1G72AZ-1G9 - 8G," 2015.

 D3.6 2nd Analysis of On-Chip Caches and Dynamic Memories

© 2018. UniServer Consortium Partners. All rights reserved 38

[23] Prashant J. Nair, Dae-Hyun Kim, and Moinuddin K. Qureshi, "ArchShield: Architectural Framework for
Assisting DRAM Scaling by Tolerating High Error Rates.," in In Proceedings of the 40th Annual
International Symposium on Computer Architecture (ISCA ’13)., 2013.

[24] Matthias Jung, Éder Zulian, Deepak M. Mathew, Matthias Herrmann, Christian Brugger, Christian Weis,
and Norbert Wehn, "Omitting Refresh: A Case Study for Commodity and Wide I/O DRAMs," in In
Proceedings of the 2015 International Symposium on Memory Systems (MEMSYS '15), 2015.

[25] Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu, "RAIDR: Retention Aware Intelligent DRAM
Refresh," in In Proceedings of the 39th Annual International Symposium on Computer Architecture
(ISCA ’12), 2012.

[26] R. K. Venkatesan, S. Herr, and E. Rotenberg, "Retention-aware placement in DRAM (RAPID): software
methods for quasi-non-volatile DRAM," in In The Twelfth International Symposium on High-Performance
Computer Architecture, 2006.

[27] Chung-Hsiang Lin, De-Yu Shen, Yi-Jung Chen, Chia-Lin Yang, and ChengYuan Michael Wang,
"SECRET: A Selective Error Correction Framework for Refresh Energy Reduction in DRAMs," in ACM
Trans. Archit. Code Optim. 12, 2, 2015.

[28] Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa R. Alameldeen, Chris Wilkerson, and Onur Mutlu, "The
Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental
Study," in SIGMETRICS Perform. Eval. Rev. 42, 1, 2014.

[29] Kevin K. Chang, A. Giray Yaălikçi, Saugata Ghose, Aditya Agrawal, Niladrish Chatterjee, Abhijith
Kashyap, Donghyuk Lee, Mike O’Connor, Hasan Hassan, and Onur Mutlu, "Understanding Reduced-
Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and
Mechanisms," in Proc. ACM Meas. Anal. Comput. Syst. 1, 1, Article 10 (June 2017), 4, 2017.

[END OF DOCUMENT]

