
© 2018. UniServer Consortium Partners. All rights reserved

D6.4 – OS Support for Standalone

Micro-Server Deployments

Contract number 688540

Project website http://www.UniServer2020.eu

Contractual deadline Project Month 27 (M27): 30th April 2018

Actual Delivery Date 1st June 2018

Dissemination level Public

Report Version 1.0

Main Authors Panos Koutsovasilis (UTH), Christos Kalogirou (UTH), Christos

Antonopoulos (UTH), Srikumar Venugopal (IBM), Konstantinos Tovletoglou

(QUB), Lev Mukhanov (QUB), Christian Pinto (IBM)

Contributors Evangelia Malami (UTH), Panagiotis Vlastaridis (UTH), Georgios

Karakonstantis (QUB), Spyros Lalis (UTH)

Reviewers Srikumar Venugopal (IBM), Georgios Karakonstantis (QUB), Nikolaos Bellas

(UTH), Arnau Prat (SPA)

Keywords edge micro-server, CPU power efficiency, DRAM power efficiency, resilience,

protection

Notice: The research leading to these results has received funding from the European Community’s Horizon

2020 Programme for Research and Technical development under grant agreement no. 688540.

Ref. Ares(2018)3172862 - 15/06/2018

http://www.uniserver2020.eu/

© 2018. UniServer Consortium Partners. All rights reserved

Disclaimer
This deliverable has been prepared by the responsible Work Package of the Project in accordance with the

Consortium Agreement and the Grant Agreement Nr 688540. It solely reflects the opinion of the parties to such

agreements on a collective basis in the context of the project and to the extent foreseen in such agreements.

Acknowledgements

The work presented in this document has been conducted in the context of the EU Horizon 2020. UniServer

is a 36-month project that started on February 1st, 2016 and is funded by the European Commission. The

partners in the project are:

The Queen’s University of Belfast (QUB)

The University of Cyprus (UCY)

The University of Athens (UoA)

Applied Micro Circuits Corporation Deutschland Gmbh (APM)

ARM Holdings UK (ARM)

IBM Ireland Limited (IBM)

University of Thessaly (UTH)

WorldSensing (WSE)

Meritorious Audit Limited (MER)

Sparsity (SPA)

More information

Public UniServer reports and other information pertaining to the project are available through the UniServer

public Web site under http://www.UniServer2020.eu.

Confidentiality Note

This document may not be copied, reproduced, or modified in whole or in part for any purpose without

written permission from the UniServer Consortium. In addition to such written permission to copy,

reproduce, or modify this document in whole or part, an acknowledgement of the authors of the

document and all applicable portions of the copyright notice must be clearly referenced.

http://www.uniserver2020.eu/

© 2018. UniServer Consortium Partners. All rights reserved

Change Log

Version Description of change

1.0 Final version prepared for submission with all inputs integrated and review comments

addressed

© 2018. UniServer Consortium Partners. All rights reserved

Table of Contents
INDEX OF FIGURES ... 5

INDEX OF TABLES ... 6

Executive Summary ... 7

1. Introduction ... 8

2. Motivation: Why are protection mechanisms for cloud deployments not applicable on standalone micro-

servers ... 10

2.1. Monitoring and Resource Management ... 10

2.2. Migration ... 11

2.3. Fault Tolerance for Management Components.. 12

2.4. Replication of Data ... 13

2.5. Conclusions .. 14

3. CPU Management at Extended Margins in Standalone Deployments ... 15

3.1. CPU guardbands quantification and elimination .. 15

3.1.1. Static undervolting ... 16

3.1.2. Dynamic undervolting .. 17

3.2. OS/Hypervisor functionality migration to reliable cores ... 19

3.3. Design and implementation of an external micro-server watchdog ... 20

4. Memory Management at Extended Margins in Standalone Deployments ... 22

4.1. Implementation ... 22

4.1.1. Hardware Interleaving .. 23

4.1.2. Software Interleaving ... 24

4.1.3. Programmer’s Interface ... 24

4.2. Experimental Evaluation... 24

4.2.1. Workloads .. 24

4.2.2. Performance Evaluation .. 25

4.2.3. Power and energy evaluation .. 26

4.3. Alternative methods for increased memory reliability .. 28

5. Conclusions ... 29

References .. 30

© 2018. UniServer Consortium Partners. All rights reserved

INDEX OF FIGURES

Figure 1: OpenStack High level architecture highlighting new and extended components developed for

UniServer ... 10

Figure 2: OpenStack High Availability redundant deployment. ... 12

Figure 3: Standalone mode system software organization. .. 15

Figure 4: Characterization of the node CPU overview. ... 16

Figure 5: Static Mode overview. .. 16

Figure 6: Safe undervolting modelling using performance counters. .. 17

Figure 7: Governor state-graph. .. 18

Figure 8: Graphical overview of Safety Margin mechanism. ... 19

Figure 9. System calls migration (D5.2) .. 20

Figure 10: External component for micro-server control. .. 20

Figure 11: Hardware setup for the variably-reliable memory and possible allocations of applications in the

memory. ... 23

Figure 12: Performance degradation compared to the nominal system employing hardware interleaving for: a)

SPEC CPU2006 and b) NAS benchmarks. ... 25

Figure 13: Power and energy comparison between our framework and the hardware-interleaved system. .. 27

file:///C:/Users/Christos/cda/Projects/2015_Uniserver/Deliverables/D6.4/D6.4_v0.7.docx%23_Toc515629007

© 2018. UniServer Consortium Partners. All rights reserved

INDEX OF TABLES

Table 1: Applicability of protection mechanisms used in cloud deployments on a standalone system deployed

at the edge. .. 14

© 2018. UniServer Consortium Partners. All rights reserved

Executive Summary

This document describes the functionality implemented to enhance the resilience of standalone edge micro-
servers when operating at extended margins. As a first step, we outline error mitigation techniques (both
conventional and those designed and implemented in the context of UniServer) which are applied in cloud
datacenters and discuss why most of them are not applicable in standalone micro-server deployments at the
edge of the network. Due to the significantly limited protection arsenal in standalone setups, configuration of
all hardware components (CPUs, memories) at extended margins needs to be more conservative, compared
with the respective configuration when the micro-server is part of a datacenter. Moreover, the UniServer
system software stack needs to provide mechanisms that can be used to proactively increase the resilience of
the system.

For CPU components, we implement a software module which operates at user-level as a system daemon
and applies configurations at extended margins in a conservative, educated manner. The applied undervolting
levels are based on the findings of offline characterization and/or online monitoring of the interaction of
software with the underlying hardware. Voltage levels are conservatively adjusted either proactively, or as a
reaction to observed erratic behavior. The same software module can additionally be used to introspect the
health status of end-user services running on the node. Moreover, in order to protect the OS/Hypervisor, we
provide functionality for the execution of critical OS/Hypervisor functionality on cores configured at reliable,
nominal operating points. Finally, we discuss the design and implementation of an external hardware module
that acts as a watchdog (and reboots the micro-server in case of crash) and provides administrators with
information on the health of the node and end-user services.

For DRAM components, we implement support of NUMA domains for the ARMv8 architecture. The latter is
used as the basis to implement the mechanisms required to manage heterogeneous reliability memory and
expose it to system- and application-software. Heterogeneous reliability memory (i.e. memory where parts of
the physical address space are accommodated by DRAMs configured at nominal settings and are thus reliable,
and parts by DRAMs configured at extended margins and are thus more power efficient yet less reliable) is
necessary in standalone deployments, as it allows programmers to protect data structures of the
OS/Hypervisor and selectively protect critical data of applications from corruption. The implementation of
heterogeneous reliability memory on the XGene 2 requires the de-activation of memory interleaving. In order
to outweigh the performance overhead of a non-interleaved memory system we experiment with software
interleaving. Finally, we evaluate the applicability and effectiveness of our heterogeneous memory framework
in terms of performance, average and maximum power consumption, and energy efficiency.

© 2018. UniServer Consortium Partners. All rights reserved

1. Introduction

A cloud datacenter typically consists of thousands of nodes that are interconnected with a high-speed network.

This complex hardware system is controlled by a software infrastructure, which is responsible for monitoring

the status of the system, managing the available resources and optimizing operation according to different

metrics, both high-level – such as quality of service (QoS), reduction of the total cost of ownership and increase

of profit margin – and low-level – such as throughput, performance, reliability, and power efficiency.

Performance, energy efficiency and reliability are already first order concerns in cloud computing. UniServer

aspires to disrupt the existing power efficiency / reliability / performance tradeoff by selectively allowing

hardware to operate at extended margins, thus limiting the inherent Voltage / frequency guardbanding

introduced by hardware manufacturers to enhance reliability at the expense of power / performance efficiency.

Therefore, cloud management software is extended with mechanisms and policies to: a) reduce the power

consumption by managing efficiently the resources and exploiting both conventional and unconventional

(operation at extended margins) power reduction techniques; and b) overcome and minimize the effects of any

potential failures, by exploiting protection mechanisms and policies that try to prevent such failures, or – if this

is not possible – to at least reduce their impact.

In the context of UniServer, we extend and use OpenStack [1] to manage our cloud setup. OpenStack uses

an intermediate software layer (Libvirt [2]) to communicate with the hypervisor of the underlying nodes. Both

the original and the UniServer version of OpenStack offer a wide range of protection mechanisms, such as

migration and data replication, that can deal with failures. Moreover, UniServer OpenStack can collect detailed

information about the health status of the nodes and it can explicitly request node configuration at more power

efficient / less reliable points through the extended version of Libvirt.

Beyond cloud datacenters, UniServer architectures of interest span fog deployments as well. Such

deployments often include standalone micro-servers. Although, similar to cloud datacenters, the major target

of improving power & performance efficiency without disrupting reliability or QoS holds in fog/edge micro-

server environments, there are two major differences:

a) In standalone deployments each node is fully responsible for itself; there is no centralized software to

monitor and control operation, and to act as a frontend that receives new workloads and assigns them

to nodes, having the opportunity to command a re-configuration of the node in advance if necessary..

This requires extra intelligence on behalf of the system software at the node-level in order to identify

the sweetspot in the tradeoff between energy efficiency and the reliability of the system, and to react

to unexpected changes to the workload.

b)) The arsenal of mechanisms for protection against failure and for recovery is significantly more limited.

For example, techniques such as data replication and cold or warm standby of backup services are

popular in cloud deployments to protect against node crashes. However, most of these techniques

assume the availability of multiple independent nodes, which accommodate the replicas, standby

backup services etc., which is not the case in standalone edge setups. Therefore, system software on

standalone servers needs to be conservative when operating at extended margins, as manifested

errors will lead – with high probability – to service disruption.

This deliverable discusses the design and implementation of the software infrastructure needed for operation

at extended margins in standalone deployments. The respective infrastructure is implemented as a

combination of in-hypervisor support and an external software module, operating as a system daemon at the

user-level. This system software infrastructure is fully responsible for managing and configuring the node and

implementing resilience mechanisms and policies. The daemon communicates with the hypervisor using the

same extended interface exposed by Libvirt to OpenStack.

The rest of the document is organized as follows:

Section 2 motivates the necessity of additional functionality to enable operation at extended margins in

standalone micro-server deployments. We briefly discuss mechanisms applied to protect services running on

cloud infrastructure. Some of them were offered by the vanilla implementation of OpenStack, whereas others

were introduced by the UniServer consortium. We find that most of those mechanisms are not applicable (or

practical) in standalone micro-server deployments and discuss why this is the case.

© 2018. UniServer Consortium Partners. All rights reserved

In Section 3 we focus on CPU management. We introduce a voltage/frequency governor which takes into

account runtime metrics and core utilization and uses a prediction model to dynamically set the CPU to a safe,

“just right” extended voltage / frequency configuration. In this area of the configuration space we attain power

gains without observably increasing the probability of errors. We discuss the safety vs energy efficiency

tradeoff, and how it is steered towards additional safety in a standalone deployment. Another technique used

to limit the susceptible to errors surface of OS/Hypervisor code is the migration of the respective functionality

to cores configured in nominal settings. Finally, we discuss the design and implementation of an external

watchdog for XGene 2. XGene 2 does not include a Baseboard Management Controller (BMC) that would

allow out-of-band monitoring and management of a node. This functionality is necessary in remote standalone

deployments, as it allows external monitoring of system health and automatically reboots the system if and

whenever necessary.

In Section 4 we discuss the design and implementation of the infrastructure to support a memory system

characterized by heterogeneity in terms of reliability and power efficiency. DRAMs serving different ranges of

the physical address space can be configured to operate at different voltage levels and refresh rates. This

heterogeneity is exposed to system and applications software. The design and implementation of

heterogeneous memory support is a non-trivial undertaking, yet it is particularly important in stand-alone

deployments. In cloud deployments, there are a multitude of data protection mechanisms. Therefore, the cloud

management software may opt to configure the whole physical memory of the system to a less reliable

operating point. However, in standalone environment this is not the case; it is necessary to provide reliable

volatile (DRAM) storage for important system and application software data.

Finally, Section 5 concludes the document.

© 2018. UniServer Consortium Partners. All rights reserved

2. Motivation: Why are protection mechanisms for cloud deployments

not applicable on standalone micro-servers

Figure 1: OpenStack High level architecture highlighting new and extended components developed for UniServer

OpenStack is an open source software for managing data center infrastructure that includes compute

machines (servers), storage arrays, and networking equipment. The UniServer project has developed

techniques to enable energy efficient, yet high performance micro-servers. An important technique explored

by the UniServer project has been the exploitation of voltage states outside of the manufacturer-imposed

guardbands that are more energy or performance efficient. The trade-off for running a server at these extended

margins is to accept an increase in the probability of errors and failures, even if minimal.

Modifying OpenStack to support UniServer techniques has been a key focus for the project. Therefore, it is

now possible for OpenStack to manage a data center equipped with UniServer-enabled servers so that

efficiency gains can be realized at an aggregate level. The respective work has been described in deliverables

D6.1, D6.2 and D6.3. Ongoing research in Work Package 6, which will be reported in deliverable D6.5, is

exploring fault tolerance techniques so that the increase in the failure probability can be handled at the data

center management level.

Most of these new OpenStack capabilities for managing server resources and mitigating the effects of failures

assume that the cloud framework has multiple nodes under its control as normally expected in a cloud

deployment. Therefore, they are not realistic or even not applicable in a standalone server scenario. However,

the standalone scenario requires only the management of a single server instance and protecting the workload

running on it. In the following sections, we will review the capabilities provided by OpenStack and its extensions

developed by UniServer for meeting the requirements of data center management. We’ll then contrast these

requirements in the context of standalone mode and advise which of these capabilities meet the requirements

of operating a UniServer machine in standalone mode.

2.1. Monitoring and Resource Management

The following new capabilities have been developed for OpenStack as part of UniServer (Figure 1):

1. Extending Nova, the compute service of OpenStack, to collect and provide information on the resource

utilization of a Virtual Machine running on a compute node, the number of correctable and

uncorrectable errors caught by that node and CPU/memory power consumption. This information is

attained through Libvirt.

2. Extending the telemetry component of OpenStack, Ceilometer, to receive and digest the information

collected by Nova. This allows the OpenStack compute controller to estimate the energy utilization of

CPU under the current workload, as well as to assess if any nodes are at the risk of failure.

3. Extending Nova Scheduler and Compute Manager to set the operating point (voltage) of a particular

node between nominal (within guardband) and extended (outside the guardband) modes. This allows

© 2018. UniServer Consortium Partners. All rights reserved

the compute manager to set a subset of datacenter resources to run in power efficient mode and

thereby, save on energy costs.

4. Implementing scheduling algorithms in Nova to continuously map incoming VMs, according to their

priority, to nodes running in either nominal or extended mode. The key tradeoff here is the energy

saving produced for the entire datacenter versus the possibility of failure of workloads running on

extended mode machines.

OpenStack is tuned to operate on clusters of servers and all decisions are made at the cluster level based on

information aggregated from individual nodes. OpenStack observes behavior and makes workload assignment

decisions at the granularity of nodes. It does not delve into intra-node details, such as controlling scheduling

within the node, quantifying the sensitivity of individual hardware components within the node, or reaching

operating point configuration decisions for operation at extended margins. The capabilities of aggregating

information and scheduling workloads across nodes are not required in the standalone mode. However, the

need to switch a node from nominal to extended mode and vice versa is relevant in the standalone scenario

as well.

2.2. Migration

One of the main techniques available in the cloud to both facilitate resource management and protect the

workload is the migration of virtual machines. This functionality is available in the stock distribution of

OpenStack. When used for protection, this technique moves one VM from a faulty – or suspected to soon

become faulty – node to another one that is functioning correctly. This workload protection is particularly useful

for stateful applications that would not accept the failure of one instance or that have a costly recovery-from-

reboot process.

The migration of a virtual machine involves a source node, the one currently running the VM to migrate, and a

destination node to host the VM after its migration. Migration in its naïve implementation (also known as cold

migration) involves stopping the virtual machine, copying its whole state to the destination node over the

network and resuming execution. The state of a virtual machine is composed by the CPU state, the memory

and block devices (e.g., disks), should the filesystem not be shared across nodes. However, the above

approach often introduces long disruption of the service being migrated, as the VM is paused for the whole

time needed to copy the state to the destination node. This is particularly observable when a VM has large

memory or disk footprint. To overcome this problem, OpenStack provides the capability to live migrate VMs

[3], i.e., migrating a virtual machine without interrupting its normal operation. The hypervisor is capable of

marking the memory pages belonging to a virtual machine to track them during the copy. Memory pages are

copied to the destination node while the source VM is still functional, and only when the majority of the memory

pages is already copied is the VM paused for the actual migration. In most cases this approach stops the

virtual machine for a negligible amount of time, needed to finalize the copy of the last few memory pages and

move CPU state (that cannot be done while the VM is operational). The time to perform a live migration can

vary according to the memory access (more specifically memory-write) pattern of the VM, as pages need to

be re-copied to the destination if the application writes them during the migration. However, in general, live

migration is sensibly faster than naïve, cold migration and introduces a smaller disruption of the service, if any

at all [4].

VMs migration is not to be considered the Holy Grail for the protection of a workload, as it is effective only if

failures can be predicted ahead of time, before a node starts malfunctioning and causes irreparable damage

to the state of the workload. As a matter of fact, VM migration is mostly used in cloud production environments

to move virtual machines out of nodes that are overloaded or are going under a maintenance cycle.

At the system level, the requirements for a successful VM migration are:

1) At least two compute nodes in the cluster to act as source and destination.

2) A destination node with enough resources (memory, CPU, disk) to host the virtual machine being

migrated.

3) A network connection between source and destination nodes.

© 2018. UniServer Consortium Partners. All rights reserved

In OpenStack live migration is handled by Nova. The call of the service that executes the migrations takes two

arguments, namely the ID of the VM and the destination host. It is also possible to dynamically select the

destination host by omitting the second parameter of the call.

Migration, either cold or live, is not applicable in a completely standalone configuration. It may be possible in

the case of standalone machines that are connected over a local or wide area network, but the high latency

and constrained bandwidth in such scenarios may render migration too inefficient to be practically applicable.

Moreover, two of the reasons for deploying micro-servers at the edge of the network is the large volume of

data produced by the application at the edge, and the low latency requirements imposed by the application

domain. Therefore, the locality requirements in those cases prohibit services from being migrated away from

the edge node, even if this would be otherwise technically possible. Hence, workloads cannot be practically

protected from failure by transferring them to other nodes in standalone mode.

Therefore, in the standalone mode, the most likely technique to be applied is to checkpoint the virtual machine

during its execution. Checkpointing saves the current state of the VM to a file on the disk. After the node

recovers from a failure, the VM can be restarted and its state restored by reading from this file, provided that

the non-volatile storage / filesystem has survived the failure. Similarly to migration, both naïve, cold

checkpointing and live checkpointing solutions are available.

2.3. Fault Tolerance for Management Components

Figure 2: OpenStack High Availability redundant deployment.

Highly available systems aim to solve the problems of a) a system becoming unavailable, and b) the loss of

data in the event of failure. In this section, we discuss techniques for ensuring high availability of the data

center management components so that the user is able to submit and manage her workload executing on the

nodes despite of failures of individual components. Techniques for avoiding loss of data through replication

will be discussed in the next subsection.

A common approach for ensuring high availability is to ensure redundancy (Figure 2). For example, the

presence of multiple instances of the compute controller will ensure that VMs will be scheduled even if one of

the controllers crashes. OpenStack components are organized as Web services that expose a REST API for

communication with the outside world. These services are mainly stateless, with the bulk of the state residing

in the persistent data stored in the database and the message queue backend. Therefore, it is possible to

replicate each service an arbitrary number of times, as long as all the instances of the service synchronize

against the same persistent storage backends.

© 2018. UniServer Consortium Partners. All rights reserved

Redundant services can be organized in active/passive or active/active configurations. In both cases, a Virtual

IP (VIP) is used to point to an active service endpoint. In the former, the VIP points to only one service. In case

of failure the VIP endpoint is modified, so that requests are routed to the one of the passive copies, thereby

activating it. In the latter, multiple instances of the same service are active, and the VIP points to a load balancer

instance deployed to manage distribution of requests across them. There is no need to switch control in case

of service failure.

In this context, it is important to consider the redundancy of the persistent storage backend. Currently, most

commercial and open-source databases offer a mature clustered configuration, in which multiple instances of

a database are synchronized using different mechanisms. Failure of one instance switches both the reading

and writing to another replica of the database.

In the case of the standalone mode, redundancy of the control systems can be achieved by running multiple

copies on the single machine. This technique guards from software faults, however it does not necessarily

protect from hardware induced faults, as is the case in the context of UniServer. Therefore, it is debatable

whether this improves the overall reliability of the system. It is more important to prevent catastrophic loss of

data even in the case of the whole node going down.

2.4. Replication of Data

One of the critical requirements of managing data centers is to avoid catastrophic loss of data in the case of

node failures. Loss of data occurs when there is no valid copy of a data item available on any storage media

in the data center. A common technique to guard against this type of failure is to replicate data. OpenStack

enables two main resources for data storage: volumes (Cinder) and an Object Store (Swift). In both cases

there is the possibility to enable data replication and automatic failover.

OpenStack Cinder [5] is the OpenStack volumes manager. It enables the creation of replicated volumes to

guarantee availability of data in case of disaster (e.g., disk failures, node failures, etc.). The user of OpenStack

can create a replicated Cinder volume by specifying a number of backend devices that are used as replicas

and kept in synch with the primary volume. Upon a failure OpenStack informs Cinder that a certain volume,

associated to a VM, has failed and that one of the backend devices should now become the primary one.

OpenStack Cinder supports multiple storage backends each of which should support replication and failover

recovery in order to benefit from Cinder volumes replication. The configuration of replication on the backend

side is vendor dependent and it is usually treated separately from Cinder configuration. An example storage

backend with full support for replication is Ceph RBD that provides object replication capabilities by storing

Block Storage volumes as Ceph RBD objects. Ceph RBD ensures that each replica of an object is stored on

a different node, to protect data from both disk and node failures.

OpenStack Swift [6] is the default object store for OpenStack that similarly to Cinder provides seamless support

for replication of data. Replication is handled by peer-to-peer replicator processes and happens at two levels:

the database level, and the data objects level. The database keeps track of all object containers and objects

metadata. Replicas of a database are compared using hashes. Any mismatch of the respective hashes triggers

a synchronization of all replicas. Object data are replicated with PUSH semantics; each time an object is written

locally, the same data is also written into the remote replicas. When a replicator process detects that a remote

drive has failed, it chooses an alternate node to synchronize with. The replicator can also maintain desired

levels of replication during disk failures.

In both cases, volumes and object storage, one requirement for replication to be possible is to replicate the

data on multiple nodes to protect them from disk or full node failures. For some use-cases at least three nodes

are required to implement robust replication that is resilient to multiple failures.

Thus, the possibility of replication in a standalone scenario is moot. Even if the standalone servers were

connected in a network, latency and bandwidth constraints would make data replication costly, both in terms

of time and in the actual resource usage. Moreover, access to a remote data store would probably not satisfy

the data volume and latency constraints typically necessitating edge deployments.

© 2018. UniServer Consortium Partners. All rights reserved

2.5. Conclusions

Reliability is a major concern for both cloud infrastructure and standalone deployments. Faults may occur at

any time on a compute node – even when it operates at nominal operating points – affecting its availability.

This effect is more evident in scale-out deployments of compute infrastructure.

In cloud infrastructures the cloud management framework is responsible, among others, to monitor the health

of all nodes and services, and to command the hypervisors on the underlying nodes for actions, in order to

ensure stable operation for the VMs running on top of the infrastructure, within the quality parameters agreed

with the end-users. On the other hand, in a standalone deployment the hypervisor of each node is more flexible,

being responsible for all configuration and resource management decisions.

Table 1: Applicability of protection mechanisms used in cloud deployments on a standalone system deployed at

the edge.

Protection mechanism for cloud infrastructure
Practical / Applicable

for Standalone Systems

Educated scheduling of workloads No

Proactive health monitoring Yes

Workload migration No

Management components replication No

Data replication No

Checkpointing Yes (under conditions)

A set of protection mechanisms have been developed, both within and outside the context of UniServer, to

facilitate stable operation of services provided on top of cloud infrastructure, even in the presence of errors.

However, as summarized in Table 1, most of these protection mechanisms are not practical or even applicable

at all for standalone systems. Given the limited arsenal of techniques for mitigating the effects of errors, system

software on standalone micro-servers deployed at the edge needs to be more conservative when exploiting

opportunities to operate at extended margins. Moreover, it needs to be engineered in a way that proactively

minimizes the manifestation of errors. The following two sections discuss the respective techniques for

managing the operation at extended margins of the two main hardware resources in the focus of UniServer,

namely CPUs (Section 3) and DRAMs (Section 4).

© 2018. UniServer Consortium Partners. All rights reserved

3. CPU Management at Extended Margins in Standalone Deployments

In this deployment mode, the micro-server node is not coordinated by a cloud framework manager, and any

policies and mechanisms for energy footprint minimization, protection and recovery against erratic hardware

behaviour are orchestrated locally.

In order to minimize the footprint and complexity of Hypervisor code as much as possible, we have

implemented the necessary policies for standalone mode in the context of a software module, which runs

locally on the node, at the user-level, as a system daemon. The module utilizes, especially for system

monitoring and collection of information, the mechanisms already implemented in Libvirt and discussed in

detail in D5.3. The only difference is that the receiving endpoint of information is the daemon, rather than

OpenStack. Configuration / protection commands from the system daemon are typically directed straight to

the OS / Hypervisor, in order to minimize latency. Figure 3 outlines the architecture of the UniServer software

stack in standalone deployments. Note that the cloud manager (OpenStack) is not available.

Figure 3: Standalone mode system software organization.

In standalone mode the Libvirt extended API also implements an additional virtual character device which is

made available to each Virtual Machine (VM) hosted on the node. This character device is used for

unidirectional communication between the VM and Libvirt. More specifically, VM administrators may install an

optional additional software module to the VM, which acts as a forwarder of information concerning the health

of services offered by the VM. The health checking methodology is service-specific, therefore it has to be

implemented by the VM administrator / service provider. This functionality provides visibility of the health of

the end-services to the UniServer system software stack and is particularly useful when operating at extended

margins. An error introduced by erratic hardware behaviour may not produce observable effects to the health

of VMs or the health of the Hypervisor, but rather to the health and functionality of services within the VMs.

Such faults may occur in any hardware component i.e. in the cpus and in the memories.

3.1. CPU guardbands quantification and elimination

Aggressive CMOS technology scaling into lower nanometer geometries has led to variability of transistor

characteristics resulting into increased failure rates in modern CPUs. Traditionally, techniques for dealing with

transistor variability involve extra provisioning in logic and memory circuits in the form of increased voltage

margins, reduced operating frequencies and error correction circuitry. Such guardbands are specified at design

time by taking into account the implementation technology, power budget, the worst case timing paths,

operating conditions and fabrication process variations. Guardbanding leads to significant power overheads,

which is in conflict with one of the major challenges of semiconductor industry, namely limiting power

dissipation. The average power cost of guardbands can be in the order of 35% yet most of the time these

guardbands are excessive and translate to unnecessary overhead, as the worst-case combinations that were

considered at design time may appear only rarely or even not at all during the life cycle of a given processor.

Prior work already presented in D3.3, identifies and quantifies the undervolting potential in different APM

XGene 2 chips, using a diverse set of benchmarks which stress excessively the CPU microarchitecture. Figure

4 depicts an overview of the offline characterization process.

© 2018. UniServer Consortium Partners. All rights reserved

Figure 4: Characterization of the node CPU overview.

The characterization process identified substantial differences in different CPU parts (physical chips) and cores

within each part. On top of that, different workloads that exercise different degrees of pressure to different

resources on the CPU, are amenable to different undervolting levels. The observations of offline

characterization can be exploited to drive both static and dynamic voltage management policies, as will be

discussed in Sections 3.1.1 and 3.1.2.

3.1.1. Static undervolting

In this mode our module, based on the offline characterization conducted on the CPU with representative

workloads, always applies the lowest safe voltage (in extended margins). In other words, it applies the

minimum undervolting level at which all applications that were examined, through the characterization phase,

executed normally without any erratic behaviour (application crash, SDC or system crash). Figure 5 depicts

an overview of this operation mode of the module.

Figure 5: Static Mode overview.

Despite the fact, that this policy misses the potential energy savings that are presented at runtime, due to

different workloads that exhibit different amenability to undervolting levels, it is the safest policy in terms of

reliability. As the system operates under extended margins, resilience is inherently reduced and aggressive

undervolting may lead to erratic behaviour.

Our module maintains a record in non-volatile storage of the applied undervolting level. Should the system

exhibit erratic behaviour or even happens to crash, then this is detected (at the next boot in the case of a

crash) and voltage margins are updated to more conservative levels. Moreover, the Hypervisor notifies the

HealthLog (and implicitly the Predictor). This feedback and adjustment mechanism ensures that – even in the

presence of extremely adverse conditions – the system will eventually – potentially after a series of restarts –

identify a voltage level which will at least allow the workload to execute.

© 2018. UniServer Consortium Partners. All rights reserved

3.1.2. Dynamic undervolting

In dynamic mode, our voltage management module leverages the amenability of workloads to different

undervolting levels to maximize CPU power savings. In order to identify and associate dynamically changing

workloads with safe undervolting levels, our module needs a way to make the respective estimations at run-

time and apply them to the system.

3.1.2.1 Modelling

Prior work, has indicated that models can correlate with adequate accuracy a safe undervolt level, in terms of

nominal execution without any application crash, SDC or system crash, based on input from error detection

and correction circuitry. In particular, heuristics presented in [7] and [8], dynamically reduce voltage margins

while always preserving safe operation, based on the error correction ECC hardware built on modern

processors such as the server-class Intel Itanium 9560. A key observation of those works is that as the

operating voltage (𝑉𝑑𝑑) is lowered, ECC correctable errors appear before uncorrectable errors (SDCs and CPU

crashes). The rate of ECC correctable errors is used as an indicator on how aggressively to readjust 𝑉𝑑𝑑. Our

approach targets different CPU architectures where, as characterization results indicate (deliverable D3.6),

errors reported by the ECC mechanism appear very rarely. Even worse, undetected errors manifesting as

SDCs and CPU crashes usually precede detected correctable errors. In our approach, we try to predict a safe

supply voltage using a selected set of performance counters as estimators. Eventually, it is generic enough

and can be applied to any processor that provides the ability to manipulate the supply voltage and to quantify

resource pressure through performance counters.

Figure 6: Safe undervolting modelling using performance counters.

In order to take into account application-specific behaviour, a prediction model has to be trained during the

offline characterization phase. All applications that belong to the training set must be profiled using all available

performance counters of the platform. At the next step, a subset of those counters is selected to serve as input

to the model (feature selection). During this step we take into account the number and combinations of metrics

that can be concurrently collected using performance counters on the target architecture. Then, the model is

trained to infer safe undervolting levels given the respective features. Figure 6 summarizes this process. The

details are, however, outside the scope of this deliverable and will be discussed, together with the respective

experimental evaluation, in deliverable D5.5.

3.1.2.2 Voltage control governor

The resulting model is employed by a voltage control governor, in the context of the user-level daemon. The

governor is invoked periodically, observes the dynamic state of the system (and more specifically hardware /

software interaction) by sampling the performance counters and sets the appropriate undervolting level. There

is a tradeoff concerning governor invocation frequency. On the one hand, the more frequently the governor is

invoked, the closer voltage can follow the dynamic changes of hardware pressure exercised by the workload.

Beyond maximizing power efficiency, this also has the potential to result to higher reliability (especially in case

the voltage needs to be rapidly adjusted towards nominal values). On the other hand, a high frequency of

invocation results to higher overhead and higher interference between the governor and the workload.

Moreover, there are inherent limitations when sampling performance counters at a system scope; the highest

© 2018. UniServer Consortium Partners. All rights reserved

sampling frequency that results to accurate values is 100 Hz. We have empirically observed that a governor

invocation frequency of 10Hz is a good sweetspot, which limits interference, does not have adverse effects on

reliability and limits the overhead of the governor to a mere 0.04%.

Figure 7: Governor state-graph.

The governor is implemented as a Finite State Machine (FSM), depicted in Figure 7. Among other metrics, it

also monitors which cores are active, by observing the percentage of time the system was utilizing of each

core. We consider a core as active when utilization goes above 70%. On the contrary, a core is classified as

inactive when it drops below 50%. We avoid thresholds close to 100% or 0% as this would result to

unnecessarily high transition sensitivity (e.g., a core would be considered as active when merely moving the

mouse of a desktop).

The undervolting level selected for the next interval depends on the predictions of the model, the number of

active cores, as well as on the current state of the governor. Below we describe the states and the logic of the

governor:

 Back-Off: In this state, the measurements collected during the previous interval are not considered

as representative for the workload during the next interval and, therefore, are not valid input for the

model. This is the case, for example, when a core starts executing a new process/thread, or after a

long idle period. In this state, the governor does not invoke the model and does not apply any

undervolting. Instead, it applies nominal settings.

 Step-Up: This state provides a conservative, smooth transition between the Back-Off and the Stable

states. When in this state, the governor invokes the model to perform predictions in a way similar to

the Stable state. If, however, the model suggests a large reduction to the supply voltage, this is applied

gradually, in smaller steps of 5mV. This state filters abrupt and potentially risky – in terms of reliability,

should the behavior of the workload change again – voltage reductions. Voltage increase predictions,

on the other hand, are treated as emergencies and are applied immediately in order to not compromise

the reliability of the system.

 Stable: The governor collects the appropriate performance counter values for each core and invokes

the model. Then, based on the model prediction, the governor applies the new undervolting level.

Once again, if the model commands an abrupt decrease of voltage the governor transitions to the

step-up state.

3.1.2.3 Voltage safety margin

Beyond the aforementioned logic, the governor applies an additional safeguard against unreliable system

operation. Over- or under-prediction is a common side-effect of many modeling approaches. In our case, over-

predicting the safe undervolting level would result to unreliable operation. Therefore, as a last step, we

introduce a small Safety Margin to the estimated permittable undervolting. The safety margin is set equal to

the root mean square error (RMSE) between the value that is predicted for a set of validation benchmarks,

and the safe undervolting level determined during the offline characterization for the respective applications in

the validation set.

The safety margin controls the aggressiveness of our methodology. Using very small values would result to

aggressive undervolting at the risk of reduced reliability, whereas too large safety margins would merely

© 2018. UniServer Consortium Partners. All rights reserved

decrease the energy gains. Beyond using RMSE, we could assign as safety margin the maximum error

between the predicted values and validation data, but this would lead to an overly pessimistic model. In any

case, the methodology for producing the “base” prediction model would remain the same. Including the safety

margin reduces power efficiency, but enables safe operation.

Figure 8: Graphical overview of Safety Margin mechanism.

Figure 8 encapsulates the behavior of the Safety Margin mechanism. The orange diamonds are the undervolt

predictions with the Safety Margins mechanism implemented. Beyond proactively determining the safety

margin as described earlier, the governor reactively increases the Safety Margin (by 5%) after any unexpected

system crash (or other observed erratic behavior). The experimental evaluation of the effects of the voltage

governor and the conservative capping of undervolting levels will be discussed in detail in D5.5. Initial results

indicate that on Intel Xeon Skylake servers it is possible to achieve an average energy gain of 30% over the

standard dynamic voltage and frequency scaling (DVFS) governor. The average voltage applied by the

conservative voltage control governor – including the safety margin – is, on average, a mere 9.3mV higher

than the minimum safe voltage (Vmin) identified for each application through offline characterization. With

those conservative safety measures in place it was possible to run dynamically varying real world workloads

(mining, linux kernel compilation, microarchitecture simulation etc.) continuously for 3 days without observing

any erratic behavior.

While the dynamic mode exploits the correlation between safe undervolting levels and the resource pressure

exercised on hardware, the implementation is still not identical with the respective mode when the targeted

node operates under a cloud framework manager. In standalone deployments, workloads are introduced to

the system without any warning, and the governor needs to react promptly to compensate to changes to

resource pressure due to varying workloads. On the other hand, when operating under the control of a cloud

manager, the arrival of a new workload is known to the cloud manager before the actual execution takes place.

Therefore, the governor can have an advance warning and / or even opt to operate the system at nominal

levels.

3.2. OS/Hypervisor functionality migration to reliable cores

Another proactive strategy to guard against errors that compromise the stability and availability of the whole

standalone node is the execution of critical system software code on reliably configured cores only. As

discussed in previous deliverables XGene 2 allows the configuration of the CPU to nominal / extended margins

at the granularity of PMDs (pairs of cores). Therefore, one (or more) pairs of cores are maintained at nominal

settings and system code is directed to them.

Deliverable D5.2 describes in detail the methodology for migrating system calls, page fault handler, interrupts,

scheduler, etc. to reliable cores. The migration of OS/Hypervisor functionality to reliable cores requires the

non-trivial undertaking of breaking the SMP1 assumptions of Linux and KVM. Figure 9 illustrates the high-level

1 Each core executes the OS/Hypervisor code on its own to serve system calls and page faults initiated by

processes running on that core, to schedule processes on that core etc.

© 2018. UniServer Consortium Partners. All rights reserved

handling of system calls migration. Migration of system-code functionality to reliable cores significantly reduces

the surface of critical code susceptible to errors due to being executed on potentially unreliable hardware.

3.3. Design and implementation of an external micro-server watchdog

A micro-server may inadvertently crash even when operating at nominal configuration. Operating at extended

margins inevitably increases the risk of a node becoming unresponsive. A hardware watchdog is, therefore,

required to detect such cases and restart the node. In standalone deployments, where the micro-server often

is not readily accessible, such a mechanism is even more valuable. Many commercial servers include a

baseboard management controller (BMC) which implements a watchdog. BMCs also typically implement

virtual remote console functionality, as well as introspection capabilities to server hardware (through IPMI

interfaces).

Unfortunatelly, XGene 2 boards do not come with a BMC add-on. Therefore, we had to design and implement

this functionality. Figure 10 outlines the architecture of our approach. Our solution is based on a Raspberry Pi

(RPi), combined with simple circuitry to restart the node. We selected RPi as it is a low cost platform, with low

power footprint and rich connectivity options.

The circuitry consists of two optocouplers and one BJT transistor. The transistor acts as a switch that enables

the optocouplers when the general purpose I/O (GPIO) pin of the RPi that is connected to the transistor base

is high. When the optocouplers are enabled they short-circuit the reset pins of the motherboard (pins RST1

and RST2) with a 200 Ω resistor.

We opted to employ two optocouplers to achieve galvanic isolation between the RPi and the micro-server.

This way, our circuit does not use a common ground and any anomalies in the power lines of either system do

not affect the other system. Moreover, the circuit operates correctly, independently of the polarity of the reset

pins of the motherboard.

Figure 10: External component for micro-server control.

Application

System Call Interface

Migrate to reliable CPU Migrate to relaxed CPU

Perform system call

or page fault

Switch to privileged mode Switch to user mode

User mode

Kernel mode

Figure 9. System calls migration (D5.2)

© 2018. UniServer Consortium Partners. All rights reserved

The RPi expects a periodic heartbeat which is generated by the user-level daemon and transmitted through

the serial interface of XGene 2. Should the heartbeat not be received, the RPi signals the daemon to gracefully

reboot the system and if this is not possible, it initiates a reset.

Beyond acting as a watchdog, the RPi is connected – through another opto-isolated serial interface – with the
serial console of the micro-server. Therefore, the console is remotely accessible through the RPi Ethernet
interface. Finally, beyond crashes, the RPi can collect – and forward – health information about the hypervisor,
the VMs, and the services within the VMs through the software stack depicted in Figure 3.

© 2018. UniServer Consortium Partners. All rights reserved

4. Memory Management at Extended Margins in Standalone

Deployments

As we discussed in prior deliverables within WP3, apart from the operation of CPUs under scaled supply

voltages, we also explore operation of the DRAMs within each server under relaxed refresh rates and voltages.

However, as we discussed in deliverable D3.3 any relaxed operating condition leads to a substantial increase

of the manifested errors posing a threat to the non-disruptive system operation since it increases the probability

of uncorrectable errors that may affect the OS. To this end, it is necessary to develop a mechanism that can

provide elevated memory protection to critical OS and application software data, while allowing less critical

application data (e.g. heap) to be stored within memory domain(s) whose energy-efficiency and reliability could

be adjusted.

This is very important in the standalone deployment, as it is difficult to apply other protection mechanisms, like

data replication. The basic idea of the proposed scheme lies on dividing the available address space into two

or more separate memory domains, whose reliability could be controlled independently by adjusting the supply

voltage and refresh rate depending on the criticality of the stored data. Having such a scheme in place we

could effectively develop intelligent data allocation policies ensuring that critical OS and application software

data are stored in a highly reliable memory domain with a reliable but power hungry setting (i.e. operating at

nominal refresh rate and voltage) while the rest of the data will be stored in the other domain(s) whose

operation could be relaxed to a less a reliable but lower power settings.

In previous year, as we discussed in the deliverable D3.3, we have implemented such a scheme on a dual-

socket Intel server, in order to enable the characterization of DRAMs under extended range of refresh rates.

In that case we had to implement such a scheme to separate the OS data since otherwise would be impossible

to perform the DRAM characterization due to the frequent system crashes by errors affecting the OS. In our

initial implementation we achieved to split the memory into 2 domains due to the availability of 2 different

memory controllers and the support of Non-uniform memory access (NUMA) on the OS ported on the Intel

server.

In the latest DRAM characterization deliverable D3.6 after the necessary changes on the UniServer firmware

and software stack/OS we have implemented such a heterogeneous scheme on the ARMv8 based Tigershark

(XGene 2) server. The implemented setup on the XGene2 was based on 4 Memory Controller Units (MCUs),

spread in 2 Memory Controller Bridges (MCBs) and a dedicated processor, the Scalable Lightweight Intelligent

Management processor (SLIMpro) used for controlling the memory operating parameters. However, the

implemented scheme was different than the one on Intel since the Linux OS kernel on the XGene2 platform

did not support NUMA. Therefore, the interface to system software and applications were not straightforward

and compatible with the previous framework and required to be refined for minimizing the overheads and its

efficiency.

However, such inefficiencies needed to be overcome for offering a better management of applications and

data allocation to the UniServer stack for enabling more efficient data allocation policies. To this end, in this

deliverable we discuss the practical limitations and the extension of our heterogeneous memory framework on

the latest UniServer stack for overcoming any issues. For the first time we also evaluate the performance

overheads incurred by the heterogeneous framework as well as the potential energy savings using various

well known benchmarks in order to understand the costs of supporting such a scheme for increased system

reliability/system even under relaxed operating points.

In the following subsections we discuss the extension of our heterogeneous memory framework on the latest

UniServer stack and its evaluation.

4.1. Implementation

In our refined implementation of the framework on the latest software stack on the XGene 2, we use the notion

and interface of NUMA domains in the Linux OS to treat different MCUs independently. NUMA domains are

conventionally used on NUMA hardware, namely systems in which different processors observe different

access latencies to parts of the physical address space. In our case, we employ the functionality of NUMA

domains even though the access time on the four MCUs is the same for each of the 8 cores of the XGene 2.

© 2018. UniServer Consortium Partners. All rights reserved

The latest Linux kernel (used on XGene 2) already exposes an interface to create "fake" domains and assign

cores and parts of the memory in each one of those. These interfaces had not been ported yet to the ARMv8

architecture, therefore we ported these capabilities and modified them to suit the purposes of the framework.

4.1.1. Hardware Interleaving

One of the faced practical challenges lies on the memory interleaving mechanism that is used conventionally

for improving the performance and avoiding frequent stalls due to a congested memory accesses. In fact,

interleaving spreads memory accesses across different MCUs allowing to parallelize the use of the available

MCUs. With such a performance oriented scheme active the realization of the heterogeneous memory scheme

is impossible since irrespective of the data allocation made by the OS/hypervisor the memory controller would

interleave the memory access spreading them around in the DIMMs.

Therefore, the first step in realizing our framework was to deactivate the hardware interleaving. This can be

achieved at the initialization phase of the MCUs, during which we can define the level of interleaving, either

between the four MCUs, or inside each MCB, or disable it totally.

Figure 11: Hardware setup for the variably-reliable memory and

possible allocations of applications in the memory.

At kernel boot time, we disable the hardware-based interleaving to achieve a separate address space for each

MCU and we extract the address space of each MCU from the Advanced Configuration and Power Interface

(ACPI) table, which corresponds to each DIMM. We use our interface to introduce 4 fake NUMA domains,

each one corresponding to one MCU. Even though all NUMA memory domains have the same access time

from each core, we assign the cores on the first NUMA domain that we deem as the Reliable Domain with

nominal settings for the memory. The rest of the NUMA domains are configured as Variably-reliable Memory

Domains, in which the memory parameters can be relaxed. By modifying the allocation scheme policy, we are

forcing the Linux kernel and every application using the default allocation functions of the OS to allocate data

with priority on reliable memory, as long as there is enough memory in this domain.

Applications can control the memory allocations for the whole application through the numactl command of the

NUMA interface, which specifies the memory domain that the application will use. In Figure 11, APP 1 and

APP 2 are examples of such an allocation; the whole application is assigned to either the Reliable Domain or

the Variably-reliable Domain. Parameters can be passed to numactl, such as --membind, which define the

NUMA memory domain that is going to be used.

© 2018. UniServer Consortium Partners. All rights reserved

4.1.2. Software Interleaving

As we will show later in our results our experiments indicated that deactivating the hardware-based interleaving

incurs high performance overheads in most cases. The result is expected as the interleaving allows

consecutive accesses to be load balance across the MCUs. In case that a benchmark allocated memory less

than the capacity of one MCU, the allocation will reside in one MCU and the bandwidth will be limited to the

one of one MCU.

Therefore, we had to utilize a mechanism to limit such overheads and close the performance gap compared

to a system with hardware-based interleaving

To this end, we have enabled the use of software interleaving between NUMA memory domains. This was

achieved by utilizing the parameter --interleave of the numactl policy of Linux. By doing so, applications can

exploit the memory bandwidth of multiple MCUs as in the case of the default hardware-based interleaved

configuration. In our setup, we can extend the software-based interleaving among the 4 MCUs, however we

limit the interleaving to the 3 variably-reliable domains, so that the reliable domain is not bloated with non-

critical data.

4.1.3. Programmer’s Interface

In order to facilitate the adaption of our techniques for heterogeneous memory in commercials systems, we

introduce an interface that enables the programmer to customize their applications for increased reliability for

the critical data, to give the ability to allocate non-critical data on variably reliable to save energy and power,

and ensure the proper operation of the system when other protective mechanism are sparse in the standalone

deployment.

Programmer can also control the memory allocations at the granularity of individual allocations, if source code

is available and can be modified. Typical dynamic allocation primitives, such as malloc, can be converted to

the respective numa-aware ones, such as numa_alloc_onnode in which programmer can specify the NUMA

domain that she opts to allocate the data on. With the knowledge of the criticality of different data-structures,

programmer can place them in the appropriate memory domain.

We are forcing the Linux kernel and every application using the default allocation functions of the OS to allocate

data with priority on the first MCU, as long as it is not full. The first MCU is set up with the nominal parameters

for supply voltage and refresh rate.

The applications can explicitly allocate memory from the second domain MCB. We have developed an

extension of malloc that uses the same scheme of allocation as the default Linux policy, however it prioritizes

allocations of memory objects on the second MCB domain. The data structures of the OS have been extended

to support allocations from the two domains.

For cases direct control on physical memory allocation is required, we have developed a routine that uses

mmap interfaces and /dev/mem to allocate memory on a specific DIMM explicitly and disable that memory for

normal allocations. This explicit, low-level allocation mechanism mitigates the uncertainty of memory location

caused by malloc. Therefore, we ensure that the same physical memory will be allocated for each experiment,

thus yielding reproducible results.

4.2. Experimental Evaluation

4.2.1. Workloads

For evaluating the heterogeneous memory framework, we chose a set of benchmarks, ranging from micro-

benchmarks that are used typically in DRAM characterization, to real-world applications. Each of them stresses

the cores and DRAMs in a different way and allows to study the influence of our modifications in different

workloads. In particular we use:

1. Micro-benchmarks which identify deficiencies in utilization of memory bandwidth. STREAM is an
example of a micro-benchmark used to quantify the bandwidth of DRAM.

© 2018. UniServer Consortium Partners. All rights reserved

2. SPEC CPU2006, a classical benchmark suite. We run 29 of the benchmarks with the "ref" data inputs,
as a single instance in a core and as the "rate" version of the benchmarks by running an instance of
the application in each core. This way we can evaluate the system on typical conditions of the SPEC
benchmarks and also with increased pressure on memory and CPU.

3. NAS Parallel Benchmarks (NPB), a small set of programs designed to help evaluate the performance
of parallel supercomputers. The benchmarks are derived from computational fluid dynamics
applications and consist of 8 kernels. The version of NAS we use is parallelized with OpenMP and
utilizes all cores of the system.

To evaluate the efficiency of the developed mechanism and quantify any performance overhead we used the

metric that we evaluate is MPKI (Misses Per Kilo-Instructions). It reflects cache performance and the number

of accesses that end up in the main memory.

4.2.2. Performance Evaluation

Figure 12: Performance degradation compared to the nominal system employing hardware interleaving for: a)

SPEC CPU2006 and b) NAS benchmarks.

© 2018. UniServer Consortium Partners. All rights reserved

As we said above, by disabling interleaving of the memory, we induce a degradation of the exploitable

bandwidth by applications, as accesses are not spread across the MCUs. We measure the memory bandwidth

with the STREAM micro-benchmark with less than 8 GB allocation so that in the non-interleaved system the

allocation is restricted in only one MCU. The bandwidth of the default system, that spreads the accesses across

all 4 MCUs, is 22.1 GB/s which corresponds to 5.52 GB/s per MCU. When the hardware-based interleaving is

disabled and data are allocated in one MCU, we saturate the bandwidth of one MCU at a transfer rate of 7.63

GB/s, which is higher than the default system’s bandwidth of one MCU in the hardware-based interleaved.

However, in reality when we use STREAM with more memory which extends to multiple memory domains the

bandwidth does not increase more than 10.9 GB/s.

Figure 12 depicts performance degradation of benchmarks from the SPEC CPU2006 and NAS benchmark

suites, compared to the hardware-interleaved memory system. For the isolated cases in which a slight

performance increase (less than 1%) is observed, the culprit is system noise and OS jitter. On average, the

non-interleaved implementation of heterogeneous memory framework decreases performance by 49.39%.

This is expected, as memory bandwidth is not utilized properly.

Interestingly, we observe that the implementation based on software interleaving reduces the overhead to a

mere 6% compared to hardware-based interleaving, even though each application is limited to 3 MCUs,

compared to 4 in the nominal operating state of the hardware-based interleaved system.

The impact on the performance seems to be very workload dependent. In fact, we can observe that 9 out of

the 36 applications exhibit under 5% degradation when they are executed using the non-interleaved scheme.

On the other hand, 462.libquantum and 470.lbm exhibit a 2.11x and 2.28x slowdown respectively for the non-

interleaved implementation and 28% and 27.3% for the software-based interleaved.

The worst-case scenario of performance degradation occurs in both the non-interleaved implementation and

the software-based interleaved for the same benchmarks, namely 462.libquantum and 470.lbm. They suffer a

2.11x and 2.28x slowdown respectively for the non-interleaved implementation and 28% and 27.3% for the

software-based interleaved. It is interesting to note that 25 out of 36 applications executed in the software-

interleaved system inflict less than 5% overhead.

To further investigate the workload dependence of the performance degradation, we investigated how memory

access pattern and intensity are affecting the performance degradation for each implementation, the non-

interleaved and the software-based interleaved. We measure the MPKI to reflect how memory intensive an

application is, as it is not affected by the execution time of the benchmark. Furthermore, MPKI remains similar

across 3 setups (hardware interleaving, no interleaving, software interleaving), which is expected as it is

affected by the size and the associativity of caches and the order of accesses of the benchmark, which both

remain the same.

To further quantify the dependency between the afflicted performance overhead and MPKI, we use the

Spearman's rank correlation coefficient [9], rs, which reflects the monotonic relationship between those

variables. The correlation coefficient is estimated as:

𝑟𝑠 = 1 −
6×∑ 𝑑𝑖

2

𝑁×(𝑁2−1)
 ,

where 𝑑𝑖 is the difference between two ranks of each observation N is the number of samples.

Our results indicated that for the naive implementation the correlation is high with rs = 0.7. In case of our

framework the correlation coefficient is lower with crs = 0.59. This indicates that after the optimization, the

incurred overhead is less correlated with the memory intensiveness of the application. This can be attributed

to the fact that we have significantly less overhead, and part of this overhead is associated now with

implementing software-based interleaving.

4.2.3. Power and energy evaluation

To quantify the maximum expected power gains, we configured our framework with 3 MCUs at the least reliable

settings. We can lower the supply voltage only on the DRAM DIMMs associated with one of the MCBs (MCB

1, so MCU 2 and 3) and relax the refresh rate on three of the MCUs (MCU 1, 2 and 3).

© 2018. UniServer Consortium Partners. All rights reserved

We configure SLIMpro to set the supply voltage to the minimum specified by the DDR datasheet, namely 1.425

V or 95% of the nominal, and increase refresh rate from the nominal 64 ms to 2.283 sec, which is the maximum

allowed refresh rate on the XGene 2 server. Figure 13 (top) shows the average DRAM power consumption of

the non-interleaved and the software-based interleaved system with 3 MCUs, compared to the hardware-

based interleaved system. With this configuration of our framework, we can lower the average DRAM power

consumption of the DIMMs from 9.3 W to 7.5 W, yielding and average gain of 19.9%. The highest DRAM

power consumption, which is a metric of interest when considering a power capped system, is observed when

executing the 470.lbm benchmark. Operating DRAMs at extended margins reduces the maximum power

consumption from 18.4 W to 13.3 W, or by 27.6%.

Taking into account the execution time overhead introduced by memory segmentation, we can calculate the

difference of the energy footprint of applications executed with the nominal configuration vs the one exploiting

extended margins. We also measure the power consumption of the CPU during each execution to take this

into account as well. For those experiments CPU operates at nominal settings, in order to isolate power /

energy effects of the memory system. We calculate the energy of the system based on the integral of the

power over the duration of the benchmark.

Figure 13 (bottom) presents the results of the calculated energy footprint of applications on our system,

normalized to that of the hardware-based interleaved system. The naive implementation introduces an energy

overhead of 19.9%, while the utilization of the software interleaving implemented by our framework achieves

a reduction in energy consumption of 8.8%.

Figure 13: Power and energy comparison between our framework and the hardware-interleaved system.

© 2018. UniServer Consortium Partners. All rights reserved

Finally, by slicing the memory into different domains, we can employ additional power saving techniques when

one of the memory controllers is not in use. We can progressively set memory controllers to deeper and deeper

sleeping states, or even turn it off if there are no resident data, thereby drastically reducing the maximum

power consumption of the system.

4.3. Alternative methods for increased memory reliability

Note that apart from the above scheme, the findings of the characterization and the proactive and reactive

mechanisms discussed in D5.4 could also utilized for increasing the memory reliability and system availability

to complement the heterogeneous scheme even under relaxed refresh rate and/or supply voltage.

For instance, the Linux governor presented in Section 3 can also monitor the DIMM temperature of the variably

reliable domains and in case that it exceeds 70C, which was found to be a critical threshold beyond which the

system crashes with extremely high probability then it could increase the refresh rate or voltage at a higher

point in order to limit the errors.

Similarly, the checkpointing and restart mechanism described in the deliverable D5.4 could be used to further

enhance the system dependability, in case that the heterogeneous scheme and any reactive mechanism would

fail to maintain non-disruptive system operation.

© 2018. UniServer Consortium Partners. All rights reserved

5. Conclusions

In this document we introduced system software support for standalone micro-server deployments, to facilitate

the exploitation of extended margins for the operation of CPUs and DRAMs, while at the same time minimizing

the risk to compromise the stability of the system.

We observe that standalone systems enjoy flexibility in managing themselves, in contrast with cloud

deployments, where the operating point of the node is often commanded by an external cloud management

framework. At the same time, however, standalone micro-servers cannot benefit from protection mechanisms

typically applicable on cloud infrastructure. Therefore, we find that system software needs to be more cautious

and conservative when exploiting opportunities to operate hardware at extended margins. Moreover, it needs

to provide mechanisms that allow software to selectively execute code and store data on nominally configured

(and thus nominally reliable) CPU cores and DRAM regions respectively. Finally, the system (both at the

hardware- and software-level) needs to be engineered in a way that allows, should all other safeguards fail,

autonomic recovery from erratic operation.

In Sections 3 and 4 we discussed the design and implementation of the respective mechanisms and policies

for the management of the operation of CPUs and DRAMs at extended margins in standalone systems. The

proposed mechanisms and policies are characterized by an interesting tradeoff. Power gains by operating at

extended margins are limited by the conservativeness necessary for operating in standalone mode without

excessively risking quality of service. The respective energy gains are also limited by the overhead introduced

by some of the proactive protection mechanisms. However, as the experimental evaluation presented for the

heterogeneous reliability memory system proved, those overheads are limited by careful implementations of

the respective mechanisms and cannot outweigh the power and energy gains unveiled by operating CPUs and

DRAMs at extended margins.

© 2018. UniServer Consortium Partners. All rights reserved

References

[1] OpenStack, "Open source software for creating private and public clouds," [Online]. Available:

https://www.openstack.org/.

[2] libvirt, "implementing a new API in libvirt," [Online]. Available: http://libvirt.org/api_extension.html.

[3] Openstack, "OpenStack Docs: Migrate instances," [Online]. Available:

https://docs.openstack.org/ocata/admin-guide/compute-live-migration-usage.html.

[4] W. Voorsluys, J. Broberg, S. Venugopal and R. Buyya, "Cost of virtual machine live migration in clouds: A

performance evaluation," in IEEE International Conference on Cloud Computing, Heidelberg, Springer,

2009, pp. 254--265.

[5] Openstack, "OpenStack Docs: Replication," [Online]. Available:

https://docs.openstack.org/cinder/pike/contributor/replication.html.

[6] Openstack, "OpenStack Docs: Replication," [Online]. Available:

https://docs.openstack.org/swift/latest/admin/objectstorage-replication.html.

[7] A. Bacha and R. Teodorescu, "Using ECC Feedback to Guide Voltage Speculation in Low-Voltage

Processors," in In Proceedings of 47th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2014.

[8] A. Bacha and R. Teodorescu, "Dynamic Reduction of Voltage Margins by Leveraging On-chip ECC in

Itanium II Processors," SIGARCH Comput. Archit. News, vol. 41, pp. 297-307, 6 2013.

[9] D. G. Bonett and T. A. Wright, "Sample size requirements for estimating pearson, kendall and spearman

correlations," Psychometrika, vol. 65, no. 23, 2000.

