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Executive Summary 

This document describes the fault tolerance support for UniServer as developed in Task 6.3 within the Work 

Package 6 (WP6) of the UniServer Project Description of Action (DoA). This is in fulfillment of Deliverable 

D6.5, OpenStack Resilience on Extended Margins Micro-Servers. 

The UniServer Project seeks to exploit the Voltage-Frequency-Refresh Rate (VFR) settings of processors and 

memory, outside of the pessimistic values imposed by the manufacturer, in order to improve overall energy 

efficiency and performance. One of the target deployments for UniServer is in cloud data centers where any 

efficiency gains aggregated over thousands of machines can vastly improve a provider’s Total Cost of 

Ownership (TCO). However, applying extended margins also causes the probabilities of errors and failures to 

increase. 

In this deliverable, we introduce a new proactive fault tolerance mechanism that uses predictions over system 

error data in order to predict possible server failure and then takes actions to conserve high value workloads 

from disruption. Our mechanism is decentralised and runs at the level of individual servers but is integrated 

with the centralised scheduling and resource management components introduced in previous deliverables. 

Our evaluations show that the proposed mechanism is able to accept more high-value VMs (16% higher than 

priority scheduling without fault tolerance) while still keeping 50% of the data center in the more energy efficient 

(extended margin) configuration. 

 

  



© 2019. UniServer Consortium Partners. All rights reserved    Page 8 of 22 

1. Introduction 

The UniServer project has the goal of exposing and exploiting extended margins of the underlying machine to 

improve its energy efficiency and performance. The extended margins refer to voltage and frequency states 

outside of the nominal guardbands for safe and correct operation imposed on processors and memory chips 

by manufacturers. While this reduces the processor power consumption, it may increase the probability of 

errors and failures. The UniServer project seeks to minimize the impact of these failures at all levels of the 

system stack on the one hand by avoiding them – through a thorough characterization of hardware and 

hardware / software interaction – and on the other hand by anticipating them and implementing mechanisms 

to avoid disruptions. 

Work Package 6 (WP6) aims at providing enhancements and specialized resource management policies for 
OpenStack running on 64-bit ARM based micro-servers. WP6 devises techniques that improve the 
management of virtual machines (VMs) on hosts with heterogeneous power and performance settings. This 
heterogeneity introduces both advantages and tradeoffs that should be incorporated in managing the running 
VMs. In a previous deliverable, D6.2, this work package introduced a new scheduling algorithm that assigns 
high-priority, revenue generating VMs to the most reliable server machines running within guard bands while 
allocating other VMs to servers running in extended margins to save on overall power consumption. 
Subsequently, in deliverable D6.3, we discussed implementation of this algorithm in the OpenStack Resource 
Manager to be deployed in a real datacenter.  

In this deliverable, we continue this focus on server operation in datacenters. Specifically, our concern here is 

to improve the resilience of the VMs to possible errors and faults, however marginal, caused by the use of 

UniServer extensions to server hardware. Our response has been to design a fault tolerance mechanism that 

proactively detects possible server failures by predicting over the system data obtained from the APIs provided 

by the hypervisor, and takes action to conserve high-value VMs running on it. To improve the speed of 

response, this mechanism is decentralised by design wherein the fault tolerance is executed at the level of 

individual servers, rather than at the central controller level as it is done in present-day OpenStack. 

In the next few sections, we will describe the background of our research (Section 2) and the resilience 

requirements of running UniServer in the data center (Section 3). Then, we detail the design and 

implementation of the proactive fault tolerance system (Section 4) and distinguish it from the reactive fault 

tolerance that can be achieved in current OpenStack (Section 5). Finally, we evaluate the mechanism in a data 

center setting (Section 6), discuss the results and conclude the document. 

2. Background and Motivation 

Dealing with hardware failures is part of the daily routine of Cloud data centre management and has direct 

impact on the dependability and service level delivered to the final users. Failure can impact users’ workloads 

in various manners ranging from total service disruption to reduced perceived user experience. As of today, 

the most common source of failures in data centres are hard disks, followed by memory chips (~3%), and only 

a negligible percentage (<< 1%) is due to CPUs [1]. This is also confirmed by the available literature that mostly 

focuses on disks (both spinning and SSDs) [2] [3] [4], DRAM chips [5] [6] and GPUs [7]. 

2.1.  Fault Tolerance in Data Centers 

Failures can be treated mainly in two ways: reactively and proactively. In the first case, both the user (owner 

of the applications) and the cloud infrastructure owner can apply checkpoint/restart policies. Checkpointing for 

fault tolerance at the datacentre infrastructure level is not practical because it consumes precious resources 

in a cluster such as storage and network bandwidth. In addition, when checkpointing at the VM level the cloud 

provider does not have visibility of the application and a checkpoint could cause the application to be resumed 

in a corrupted state. As an example, if one node in a distributed deployment crashes, having a snapshot of 

that node does not guarantee a smooth continuation of operations as the application might not be able to 

handle the loss of one of the nodes. In the Cloud domain it is more common to rely on replication of 

applications/services across failure domains, while checkpointing at the application level is more common in 

the HPC domain. 
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In this deliverable, the attention is more focused on pro-active fault tolerance, that is the ability of a system to 

predict a potential future failure and immediately react to avoid disruption in users’ applications. One example 

action is migration of virtual machines [8] to a trustworthy node. There are various previous works on 

predictions of failures in datacenters [9] [10] [11] [12] [13] that employ techniques such as Bayesian models, 

classic machine learning theories and reinforcement learning. One common point of most of the works in 

literature is relying on centralized schemes based on the analysis of clusters system traces or operating system 

logs, trying to correlate events with potential nodes failure. Centralized pro-active fault tolerance involves one 

single entity in charge of scanning the entire cluster logs looking for patterns that indicate a potential failure. 

Understanding how such an approach is not likely to scale on production-scale datacentres with hundred 

thousand of nodes is immediate. Traces need to be routed to a single location in the cluster, potentially creating 

a bottleneck in the network. Also, the single entity in charge of failures prediction might not be fast enough in 

preventing the failure of a node because busy in analysing the cluster’s logs. 

2.2.  The UniServer Hardware Reliability Model 

In Uniserver, hardware errors are directly exposed to the various software layers running on it via a dedicated 

interface. Having direct access to hardware counters is a unique opportunity for the cloud management 

software to perform informed decision based on the current status of each node. The work described in this 

deliverable moves the fault prediction process from being performed by the centralized cloud software to a 

single compute node, as an extension of OpenStack Nova compute. Each Nova compute agent is in fact 

capable of periodically monitoring the status of the hardware and independently taking decisions that aim at 

minimizing the impact of a potential failure on the running workloads. The extended nova agent periodically 

queries hypervisor interface and, using the UniServer CPU and Memory fault model, predicts node failures. 

The CPU and Memory fault models, and the node state changes process, are described in the next sections. 

To the best of our knowledge, this is the first attempt implementing such distributed pro-active fault tolerance 

in OpenStack. 

Table 1: Target hardware platforms 

Parameter Intel platform ARM platform 

Architecture x86-64 (Skylake) ARMv8 (Ampere 

X-Gene 3) 

#Cores 4 32 

TDP(W) 80 125 

Technology 14nm 16nm 

Max. Freq. 3.3 GHz 3.0 GHz 

Cache Size 8 MB 32 MB 

Memory 32 GB 128 GB 

 

2.3.  UniServer System Model 

The UniServer project envisions a system model where both hardware and software present features that are 

not available in today’s production datacentres. From the hardware standpoint, each server will expose 

extended margins of the underlying hardware to improve energy efficiency. The extended margins refer to 

voltage and frequency states outside of the nominal guardbands for safe and correct operation imposed on 

processors and memory chips by manufacturers. Higher energy efficiency comes however at the price of 

increased probability of errors or failures. To leverage such new capabilities, the software running on top of a 

UniServer machine is modified accordingly. At the lower level, the Hypervisor (KVM in the case of UniServer) 

is extended to expose switching the hardware from nominal operating conditions to extended margins, and 

vice-versa. In addition, an extensive set of probes is exposed as well to monitor for symptoms of errors in both 

CPU and memory DIMMs.  

As described in Deliverable 6.3, we have introduced a set of extensions to the OpenStack cloud management 

framework to benefit from the unique UniServer hardware features. A novel Resource Manager was developed 

to be coupled with the OpenStack Scheduler and enable scheduling decisions according to the operating point 
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of each node in the datacentre. The modified OpenStack scheduler is able to distinguish between virtual 

machines with different priorities, assigning high priority ones only to nodes operating in nominal conditions. 

Low priority VMs can be assigned to any node regardless of its operating conditions. This strategy is a first 

strategy to cope with a higher probability of errors when running in extended margins mode. The main idea is 

that high priority VMs generate more revenue and thus should not be subject to the possibility of errors or 

failures. The Scheduler coupled with the Resource Manager is able to dynamically change the operating mode 

of a node to obtain the best trade-off between minimising energy consumption and minimising the number of 

high priority VMs being rejected at scheduling time. 

In this deliverable, we are taking a step forward into further exploiting the energy efficiency gains of a UniServer 

enabled machine, by using the hardware probes exposing hardware monitoring information. Virtual machines 

are scheduled on any node regardless of its operating mode, placing the bet of scheduling high priority virtual 

machines also on nodes with higher probability of failure. During execution, each node is constantly monitoring 

the errors detected with the goal of predicting future failures. If a failure is predicted, a corrective action is taken 

by the node itself with the goal of keeping the high priority VMs always functional. If a node is unreliable 

because a fault has been predicted, it will immediately inform the central scheduler that will not consider it for 

further scheduling events of high priority VMs. 

3. Resilience requirements for UniServer Machines 

As mentioned previously, UniServer’s unique approach elevates the probability of errors appearing in the 

hardware, and thus requires specific fault tolerance mechanisms. In the following subsections, the risk of failure 

from the processor due to running in extended margins is quantified. 

The probability of failure when a processor is running in the extended margins is illustrated using a case-study 

with real hardware platforms, including commercially available CPUs used in modern servers. This analysis is 

targeting x86 (Intel Skylake family) and ARM64 (APM XGene3) server machines. Table 1 summarizes the 

target systems used for this characterization. In the following, we explain how we determine the parameters 

that capture the behaviour of a node and, specifically, the extended margins operating points and the failure 

probability when operating at such points. 

3.1.  Voltage margin characterization 

In the Skylake processor, the voltage-frequency operating point is dynamically controlled by the P-State 

manager / DVFS governor. For this evaluation, four frequency points are selected at 3.3, 3.0, 2.5 and 2.0 GHz, 

Figure 1: Voltage margins characterization for the Skylake (left) and the X-Gene 3 CPUs (right). 

The top (green) area of the bars denotes the range of sub-nominal voltages that did not result into 

any failure. The lower (blue) area of the bars are the voltages that lead to failures for some or all 

applications. 
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which cover the range of the most common frequencies applied in the balanced mode of the governor. The 

average nominal supply voltages for these frequencies are 1147, 1075, 922 and 850 mV, respectively.  

The X-Gene 3 processor, targeting micro-servers, does not support DVFS. In nominal operation it allows only 

frequency scaling. We choose four frequency points, at 3.0, 2.2, 1.3 and 0.4 GHz, covering the entire range 

that is supported by this CPU. In all cases, the nominal supply voltage equals 880 mV. 

For each nominal operating point (𝑉, 𝑓), we experimentally determine a corresponding extended margins 

operating point (𝑉𝑥 , 𝑓). We use 24 benchmark applications from the SPECCPU 2006 suite [14] that stress 

different CPU components. An experiment consists of running each application for a continuous period of 10 

minutes (if needed, we run the application several consecutive times). We perform a series of experiments, 

where we keep the CPU frequency fixed to 𝑓, and gradually reduce the CPU voltage in steps of 10 mV, starting 

from the nominal voltage 𝑉. We stop when one of the experiments leads to any type of abnormal behaviour 

(failure) and identify the immediately preceding voltage level (that did not result into a failure) as 𝑉𝑥 for the 

frequency 𝑓. 

Figure 1 illustrates the degree of undervolting that can be applied to each nominal operating point of the 

Skylake and X-Gene 3 CPUs. For the extended operating point at each frequency, we choose the lowest 

voltage within the green area, i.e., the lowest sub-nominal voltage that did not lead to any failure. For the 

Skylake CPU, the sub-nominal voltages for the four frequency points of 3.3, 3.0, 2.5 and 2.0 GHz are 929, 

865, 741 and 666 mV, respectively. For the X-Gene 3 CPU, the sub-nominal voltages for the four frequency 

points of 3.0, 2.2, 1.3 and 0.4 GHz are 840, 830, 790 and 790 mV, respectively. The characterization process 

took about 32 hours for both machines. While this amount of time is not negligible, such a characterization 

needs to be performed once, when adding a new node to the datacentre, and then only very sporadically to 

capture aging effects. 

3.2.  Failure probability 

When modern CPUs operate at nominal voltage-frequency points, hardware failures are extremely rare [15]. 

Failures are expected to occur more frequently if the CPU operates at a non-nominal point. 

In the above experiments, when we operate the CPU at extended margins we choose the largest sub-nominal 

voltage that does not lead to any failures. Afterwards, we validate the safety of the identified sub-nominal 

voltages by executing multiple experimental campaigns of random workloads at each extended operating point 

for 6 consecutive days each. 

Being unrealistically pessimistic, we assume that the 6 days of execution time without any errors is the mean 

time to failure (MTTF) for all tested extended margin points. This corresponds to a failure rate of one failure 

every 518,400 seconds, which -- again pessimistically -- we assume to be fatal, ignoring the possibility of 

correctable errors [16]. This failure rate is then used to estimate the probability of failure 𝑃𝑓𝑎𝑖𝑙𝑉𝑥,𝑓 within a 

scheduling period for a node that operates at any of the extended margin points (𝑉𝑥 , 𝑓). For example, assuming 

a scheduling period of 300 seconds, if a node is configured to operate at extended margins, the failure 

probability is 300/518,400 = 0.000579. Even with this relatively high failure probability, educated undervolting 

can provide a significant increase of the profit margin for the infrastructure provider. 

4. Proactive Fault Tolerance 

In this section, we describe how, starting from a known failure model (e.g., the UniServer failure model 

described in the previous section), the OpenStack Ocata cloud management software has been modified to 

proactively detect upcoming failures and start rescue actions for high value workloads. 

A new component has been introduced in OpenStack to track each compute node’s errors rate and, by 

exploiting the known error model, identify potential failures and act accordingly. Each UniServer compute node 

exports the count of errors identified by the hypervisor via the libvirt API (Deliverable 5.3). In addition, an error 

injection module based on a pre-defined and configurable errors distribution was developed to allow testing at 

scale and model failures tracking on non UniServer machines. 
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4.1.  Failure Lifecycle 

In previous deliverables, we focused on the datacentre scheduler which resides in the central controller. Failure 

tolerance can be implemented at the central controller. However, as we discussed previously, centralised 

solutions do not scale well for datacentres with thousands of nodes. Therefore, we shift our focus in this 

deliverable to implement fault tolerance at the level of individual nodes. This brings us the following 

advantages: 

1. Each node can monitor its own state and take proactive measures anticipating failure without involving 

the central controller. This reduces the latency of actions and improves resilience of the infrastructure. 

2. We can reduce the amount of monitoring data that needs to be transferred from the nodes and stored 

in the central controller. 

Hence, we have decided to implement our fault tolerance at the level of individual compute machines in the 

datacentre. Figure 2 conceptually shows the fault-driven lifecycle of a server machine in a cloud datacentre. 

Current datacentre resource management systems consider a node that is communicating with the central 

node to be in the available state, while a node that cannot be contacted due to a system crash or a network 

partition is categorised as unavailable. In this research, we have introduced the notion of a reliable state, in 

which the server is working as intended, and an unreliable state, in which the server is communicating and 

able to instantiate VMs but there is a high probability of system failure in a specific time horizon. 

Figure 3 shows the transition between the states. Initially, when a server is brought up, it is in the available 

and reliable state. When an error is detected and the probability of failure is predicted to be higher, then the 

server shifts into the unreliable yet available state. When the server crashes or is not communicating, then it 

is considered to be unavailable and offline. When the server is brought back online, it is initially considered 

unreliable, due to its history.  After a short maintenance period, if no errors are detected, then it is switched to 

a reliable state. 

This conceptual lifecycle is useful for managing the server’s lifecycle without involving the central controller as 

has been the case until now. This enables managing the state of the application VMs that are running on top 

of the server and safeguarding them from sudden changes in server state. 

Reliable

Unavailable

Unreliable

Figure 2: Proposed server failure lifecycle 
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4.2.  OpenStack Implementation of the Server Lifecycle 

Figure 3 shows the implementation of the Server Failure Lifecycle in the OpenStack Compute manager. The 

Compute Manager keeps track of a server’s resources such as CPUs, memory, hard disk space and network 

bandwidth, and also manages the hypervisor (e.g. KVM) that instantiates and operates the virtual machine 

instances on the server. When a VM is instantiated or destroyed, the Compute Manager reduces or augments 

the available resources by the amount requested by the VM and updates the database to reflect its current 

resource levels. The Compute Manager also creates and manages the virtual networks to which the VMs are 

connected. It communicates with the central controller to update the status of the physical server, and to initiate 

any VM migrations or evacuations.   

Therefore, given the Compute Manager’s centrality to managing the server resources, we decided to 

implement the Server Failure Lifecycle state machine in this component. Figure 3 illustrates the implementation 

and the control flow enabled by the state machine.  

When a server is initialised (either from a cold start or a reboot), it is assumed to be Available. In case of a 

reboot or restart, if the server had switched to Unreliable/Unavailable prior to crashing, then its state is changed 

to Unreliable. Otherwise, the server is considered as Reliable.  

During the server’s operation, the Compute Manager constantly polls the system through the hypervisor for 

any new errors reported in the CPU, memory or hard disks. If so, these events are fed into the Predictor, which 

is a new component that we have introduced in the Compute Manager. The Predictor takes in a series of errors 

and provides a forecast with the probability of system failure in a specific time horizon. If this probability is 

higher than a (configurable) threshold, the server is transitioned into the Unreliable state. If the errors continue 

and the Predictor revises the failure probability to be higher than another (configurable) threshold, then the 

server is transitioned into Unavailable state and does not communicate with the central controller. 

Our Compute Manager is able to follow different strategies for each transition. In the current implementation, 

the transition from Reliable to Unreliable triggers a process that examines the priority of the VMs currently 

running on the server. The high-priority VMs are queued to be migrated off to other, reliable nodes. This 

migration can be done either live or offline. We have chosen live migration to preserve the state of high-priority 

VMs. Current OpenStack implementation of migration requires that the Compute Manager sends a request to 

the central scheduler which replies back with a target host for the VM. The Compute Manager then initiates 

the migration process. 

If errors continue to happen while the server is in the Unreliable state, failure becomes a real possibility and 

evasive actions need to be taken. When the Predictor forecasts a high probability of error, then the server is 

transitioned into the Unavailable state. This prevents the central controller from allocating any further VM 

instance requests to the server. The low priority VMs running on the server are shut down and marked as 

deleted. In the Unreliable state, there are no high-priority VMs running on the server.  

There is a probability that server failure might occur at any time, even when it is in the Reliable state although 

it is more likely that this would happen in the Unreliable state, since errors have already started being apparent 

Figure 3: State Machine inside the OpenStack Compute Node 

Reliable 

Unreliable

Available

Unavailable

libvirt

Compute Manager

Predictor 
migrate_vms

evacuate_vms

forecast events

HW Faults/error events
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at the hardware level. In case of abrupt failure, current OpenStack failure mechanisms are applied, wherein a 

server (or its Compute service) is marked as disabled if it does not report to heartbeat messages from the 

central controller. Our implementation of the Unavailable state provides a more graceful method of managing 

this disruption and provides up-to-date information to the central controller.  

When the server is brought back to Available state, after a period of maintenance (for example), it is set into 

Unreliable due to its previous history. This implies that no high-priority VMs are scheduled on to the server 

unless it is monitored through a (configurable) probationary period and reported as not producing any errors. 

According to the bathtub curve, errors are more prevalent at the beginning and the end of the server lifecycle. 

Hence, this method manages the risk of server failure when it is brought back from stasis after a crash. 

4.3.  Forecasting Failures 

The Predictor provides a short-term forecast on the probability of system failure. However, at the hardware 

level, we obtain data only on the number of errors emanating from the hardware. Therefore, the challenge is 

to construct a statistical pattern out of this data that can aid us in determining the probability of system failure.  

While several machine learning methods have been proposed for predicting server failures, these are not 

suitable for deployment in the unique environment in which UniServer operates. Firstly, these have been 

mostly developed for modelling server crashes due to hard disk failures. The UniServer model envisages errors 

emanating from the processor and memory due to operating servers at voltages outside of the manufacturer 

recommended guardbands. This renders models based on analysis of hard disks’ SMART data to be 

inapplicable to our context. 

Secondly, the extended voltage margins outside of the guardbands are unique for each processor. This runs 

counter to central machine learning models that assume that the data obtained from each server are uniform 

and can be coalesced into a single model. Hence, each individual server must have its own custom parameters 

for the prediction model. 

Lastly, most of these models require data to be gathered from the servers and analysed in the central controller. 

These models are heavyweight and require significant computational resources to produce predictions. Our 

design requires that each server predict its own state. Hence, the models at individual servers must be 

lightweight so that the capacity of the server to host VMs is not impacted. 

Given the above requirements, we opted for a simple statistical combination of moving averages and linear 

regression to construct a prediction model to forecast server failure. Moving averages with overlapping 

windows dampen the effect of sudden spikes (such as a large number of errors). Linear regression (Ordinary 

Least Squares) is a standard statistical method to predict the trend in a series of observations.  

Therefore, given a list of 𝑛 sequential error observations, 𝐸 = {𝑜0, 𝑜1, … 𝑜𝑛−1}, the array of moving averages 

over a window of size 𝑤 (𝑤 < 𝑛) is: 

𝐸𝑚 = {𝑎0, 𝑎1,, 𝑎𝑛−𝑤+1}, wherein 𝑎𝑘 =
1

𝑤
∑ 𝑜𝑖

𝑘+𝑤−1
𝑘   

We then compute the slope of the simple linear regression line passing through the moving averages by using 

the standard formula: 

𝑠𝑙𝑜𝑝𝑒 =
𝑚 ∑ 𝐸𝑚.𝑋−∑ 𝐸𝑚.∑ 𝑋  

𝑚 ∑ 𝑋2−(∑ 𝑋)2 , where 𝑚 = 𝑛 − 𝑤 + 1, and 𝑋 = {0, 1, ⋯ 𝑚} 

Briefly, a positive slope implies that the number of errors and their magnitude are increasing, which indicates 

that the system is unreliable. A slope that is zero or close to it indicates one of three scenarios – zero errors 

(stable, reliable operation), intermittent errors but no apparent trend (unstable equilibrium, unreliable 

operation), or consistent production of errors (imminent failure, soon to be unavailable). We use the cumulative 

sum of errors to distinguish between these three situations. A negative slope indicates that the system has left 

a period of unreliable operation and is now reliable. 

In our implementation, we observe and gather the errors emanating from the hardware and their timestamps 

into an array that we input into the model which returns the value of the slope. This is used to drive the state 

change, if needed. 



© 2019. UniServer Consortium Partners. All rights reserved    Page 15 of 22 

4.4.  Scheduling Algorithm 

Deliverable D6.2 introduced a priority-based scheduling algorithm that we subsequently implemented into 

OpenStack (deliverable D6.3). Briefly, the scheduler aims to allocate high-priority or high value VM requests 

(these are considered equivalent) to the most reliable hosts so that these are never disrupted.  

In our previous work, we configured a portion of the servers in a datacentre in extended margins (outside of 

the guardbands) while the rest of the servers were left operating in the conservative nominal (within 

guardbands) settings. The former are more power efficient while being considered less reliable than the latter. 

Therefore, the scheduler would place high-priority VMs on to the hosts running in nominal mode. When there 

are no more servers running in nominal mode, the scheduler flips selected servers running in the extended 

mode to nominal and evicts low-priority VMs from these nodes to satisfy high-priority requests. The downside 

of this flipping process is that it may require servers to be restarted to safeguard against latent errors, and 

disrupts the normal operation of these servers. 

By introducing the reliable and unreliable states along with a proactive Predictor whose forecasts drive the 

transitions between the states, we have eliminated the requirement for servers to be locked into a certain 

configuration until resource requirements drive the change. When high-priority VMs arrive, the scheduler now 

searches for servers that are in the Reliable state, regardless of whether they are running in the nominal or 

extended mode. If there is no capacity in existing Reliable servers, then the scheduler evicts low-priority VMs 

from selected Reliable servers until enough resources are freed. 

When a server transitions from Reliable to Unreliable due to errors, the scheduler receives requests for 

migrating high-priority VMs that are hosted on the server. The scheduler then identifies a target host using the 

mechanism described previously. The actual migration is handled by the OpenStack Compute agents running 

on the servers. 

5. Reactive Fault Tolerance 

Reactive fault tolerance is the ability of recovering the VM previously executing on a failed node. This strategy 

enters into play if there was no pro-active fault tolerance policy in the datacentre or if that was not effective 

enough to migrate high value VMs before the failure happens. 

In the context of UniServer, reactive fault tolerance is implemented by re-using the priority-based scheduler 

introduced in Deliverable 6.3. Upon the failure of a node, it is possible to access the list of VM instances 

previously running on that node. The policy to react to the failure is to re-submit all the VMs to the priority 

scheduler respecting the same priority levels originally assigned by the user. Re-scheduled VMs are treated 

as new ones and the scheduling decision will be subject to both the current availability of resources as well as 

the current operating conditions of all the nodes.  

Understanding if a node is available is a trivial task in OpenStack as each Nova Compute service periodically 

sends a heartbeat signal to the Nova Conductor. This information is in turn updated into the OpenStack Nova 

database. A periodic task scans the compute services in the Nova database to identify failed nodes. When a 

failure is detected all the VMs are re-submitted to the priority scheduler using the Nova evacuate functionality 

that automatically re-deploys all the VMs formerly running on the failed node. 

6. Evaluation 

In this section, we describe the experimental evaluation of the fault tolerance mechanisms introduced in this 

deliverable.  

6.1.  Experimental Setup 

The proactive fault tolerance mechanism introduced in this document requires a full datacentre with shared 

storage to be set up in order to demonstrate its utility. While the UniServer project is based on Ampere’s XGene 

servers with ARM CPUs, the evaluation of the OpenStack fault tolerance mechanisms required more machines 

than the XGene servers currently available to all the project partners. Hence, we have decided to use virtual 
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clusters to emulate the operation of a datacentre with the fault tolerance mechanisms applied. Our changes to 

OpenStack have been verified to run on top of the two XGene servers currently installed in IBM Research – 

Ireland. Therefore, the results of this evaluation would be consistent if it was conducted on a similarly-sized 

XGene cluster 

We have used the nested virtualization [17] feature of KVM to generate a virtual cluster on a powerful compute 

server. The physical machine is a 64-bit IBM Power8E server with 192 cores and 1TB of RAM. We have 

created a cluster of 21 VMs, each with 12 cores and 40GB RAM, on which we installed and configured 

OpenStack modified with the fault tolerant mechanism presented previously. One of the VMs is configured as 

the controller node, hosting components such as the scheduler, conductor, network manager and disk image 

service. The other 20 VMs are used to emulate compute nodes configured with the State Machine described 

previously. We can create VMs on top of these to emulate the operation of a set of physical machines in a 

cluster. 

Many of the advanced features enabled by UniServer for the XGenes, such as the extended mode, were not 

available to us in the virtual cluster. Also, there would be no errors generated in the Power processor as 

envisaged by the UniServer. Even if we were able to run on an equivalent number of XGenes, we would have 

to wait for a long time before an error is generated in the extended mode. Hence, for our experiments, we had 

to create a synthetic process to inject errors to trigger the fault tolerance processes. The next section describes 

this process in more detail. 

6.2.  Injecting errors 

For the testing at scale, the pro-active fault tolerance OpenStack components were evaluated on a set of 

machines that do not provide facilities for accessing the errors counts at the CPU and memory level. Instead, 

each node generates errors according to a well-known distribution, using an ad-hoc software component that 

injects errors into the OpenStack Nova libvirt driver. To validate the actual benefit of the new proactive fault 

tolerance component developed for OpenStack, a fault injection system has been developed as well, modelling 

the arrival of correctable errors on each compute node. Such component is directly interfaced to the UniServer 

libvirt API by providing a custom implementation of the getErrorsUniserver()function.  Each time the 

function is invoked, errors are injected and generated from the Weibull distribution that is renown of being 

representative of hardware components failures over time [18].  

The process of failure generation is composed of 5 phases, depicted in Figure 4. In phase 1, the Weibull 

distribution is used to generate a pre-defined number of values between 0 and 1. This is an offline operation 

that is performed before starting OpenStack. The parameters of the distribution are configurable during file 

creation. The file generated during this first phase is then fed to the failure injection task integrated within 

OpenStack Nova. At instantiation of OpenStack, a dedicated thread is created to take care of the injection of 

faults to the node. This thread periodically reads a value (phase 2) from the file described above and applies 

to it a filter (phase 3) implemented as a step function, to decide whether an error is to be injected or not. As 

visible in Figure 4, the step function uses two different thresholds to model nominal and extended margins 

operating conditions. In other words, the threshold is used to model a higher likelihood of error when the node 

Figure 4: Error Injection Process 
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is operating in extended margins. Errors are injected when the value read from the file is greater than or equal 

to the threshold. The model developed for this deliverable envisions the possibility to inject one, two or three 

errors at a time. The number of errors is selected using a pre-defined static probability (phase 4). For the sake 

of simplicity, the injection task generates only one class of errors (e.g., CPU) as opposed to the various error 

classes tracked by hypervisor. 

After the error injection task computes the number of errors to be injected, the value is stored inside the libvirt 

driver module of OpenStack Nova (phase 5). Upon a call to the getErrorsUniserver, errors are returned 

from the local value stored in the libvirt driver and not from the hypervisor. 

Via the OpenStack Nova configuration, it is possible to set the interval at which errors are injected into the 

node, the probabilities used to choose the number of errors to be injected, the error threshold for both nominal 

and extended margin operation, and the path to the file holding the values generated from the Weibull 

distribution. 

6.3.  Workload and Experiment Design 

Our aim here is to highlight the changes that are brought by the fault-tolerance approach described previously. 

We have used the same workload model used in the previous deliverable (D6.3) that was used to evaluate the 

OpenStack Resource Management and Scheduling under UniServer conditions. We are repeating the 

workload description here for sake of completeness. 

The workload was devised to be a stream of VM requests arriving at the resource manager during a particular 

interval. We created a workload trace of 256 VM requests with an inter-arrival time of 30 secs. We assigned 

priorities randomly to these requests. Table 2 shows the distribution of the priorities as well as the resource 

requirements for VM belonging to each priority class. 

Table 2: Workload Mix for the Experiments 

Priority Flavour (resource req.) Share of Total 

0 Small – 1 CPU, 1GB RAM 40% 

1 Medium – 2 CPU, 2 GB RAM 30% 

2 Large – 4 CPU, 4 GB RAM 20% 

3 XLarge – 8 CPU, 8 GB RAM 10% 

 

The workload mix that we have chosen reflects the standard workload for any cloud provider wherein there 

are lots of requests to create small VMs with low priority, while the larger, high-priority, and more profitable 

VMs are rarer. We have also defined a lifetime for VMs with priority 0 and 1 where the former were alive for 3 

minutes while priority 1 VMs would be killed after a duration randomly drawn between 3-6 minutes. This reflects 

the scenario in which VMs are initialised to execute a single analytics or a monitoring task and are then 

shutdown. 

We have created custom metrics to reflect the measures that we consider to be of interest to the fault-tolerant 

approach. These are: 

1. Number of active VMs over time 

2. Number of VM requests rejected by the scheduler 

3. Number of servers in nominal and extended margins over experiment duration 

Metrics 1, and 2 reflect the effect of the fault tolerance mechanisms on the workload, especially on the revenue-

generating high-priority VMs while metric 3 focuses on the power efficiency of the physical infrastructure. 

These metrics were computed using custom scripts that mined the log files in the different servers and 

database entries created over the course of the experiment. 

At the beginning of the experiment we configure 50% of the nodes to operate in extended mode. Each compute 

node runs one instance of the errors generation component described in Section 6.2. The series of numbers  
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used to decide when to inject an error (Weibull) is kept constant across all scenarios for the sake of comparison 

of the results. 

6.4.  Results and Discussion 

The experiment described in the previous section was run to compare the three following scenarios: 

1. Node state and resiliency manager enabled (sm+r) 

2. Node state and resiliency manager with migration disabled (sm+nomig) 

3. Priority scheduler without state and resiliency manager (nosm+nomig) 

In the first two scenarios, we take the bet of scheduling high value VMs on any node regardless of its operating 

mode. Nodes are assigned an operating mode at the beginning, and it is kept unchanged during the whole 

experiment. The state manager on each compute node is constantly monitoring the errors logged by the 

hypervisor and predicts the node state (the four in Figure 2). When a node transitions to Unreliable state, all 

the VMs with priority of 2 or more are migrated to a safer node. In case of Unavailable node all the workloads 

currently running are killed to simulate an abrupt node failure. The resiliency manager integrated in the 

scheduler allows high value VMs (priority 2 or more) to be scheduled only on Available or Reliable nodes. 

The third scenario uses only the priority scheduler introduced in Deliverable 6.3. The priority scheduler 

allocates VMs on compute nodes according to their priority. VMs with priority 2 or 3 (high value) are only 

scheduled on nodes operating in nominal conditions. Lower priority VMs can be scheduled on nodes 

regardless of their current operating mode. In the case where there are no nodes in nominal state that can 

host the VM the priority scheduler switches a node (if available) to nominal conditions and schedules the VM 

on it. In this case the state manager on each node is used only to model nodes failure when transitioning to 

state Unavailable. No actions are taken for other state transitions. In all scenarios, VMs with priority of 2 or 

more can cause the eviction of one or more lower priority VM when all the resources in the cluster are occupied 

by other VMs. 

The idea behind the three scenarios is to show the effectiveness of a proactive fault-tolerance mechanism 

coupled with the opportunities for reduced energy consumption introduced by UniServer. In addition, the first 

two policies differ only on the proactive action taken in case of Unreliable nodes; sm+r migrates VMs off 

unreliable nodes, while sm+nomig does not. Our goal here is to highlight the importance of the proactive action 

in guaranteeing high availability for high priority jobs.  

   

Figure 5: Active VMs over time grouped by priority level. Each chart represents a 

different scenario: sm+r (left), sm+nomig (center), nosm+nomig (right) 
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The first metric we analyse is the number of active VMs (percentage over the total number of VMs scheduled 

in the experiment) over time (Figure 5) grouped by instance priority.  The first thing to note is that the proactive 

fault tolerance (sm+r) mechanism guarantees a higher number of high value VMs over time with a peak of 

16% of the VMs running with priority 3. The priority scheduler (nosm+nomig) instead is not able to react to 

node state changes and loses precious workloads due to node failures. To validate the importance of a 

proactive action the sm+nomig scenario shows how disabling migration of workloads brings the active high 

priority VMs count down, with a similar trend measured with the priority scheduler. The resiliency manager 

alone is not able to preserve as many high value workloads as the case where resiliency manager and compute 

state node manager work together. The proactive migration of VMs is coping with the potential failure of nodes 

and avoids high priority workloads to fail. 

Interesting to note is how the number of active priority 0 VMs is particularly high in the sm+nomig case (mid 

chart in the figure). This is a result of the failure of nodes that cause the destruction of high priority VMs, making 

room for new incoming VMs. Priority 0 VMs are the most frequently scheduled and quickly dominate the 

experimental cluster. When migration is enabled (left chart) the migration causes the eviction of low priority 

VMs in favour of higher priority ones.  

The activity of VMs by itself does not give a complete understanding of how effective is the proactive fault 

tolerance policy in preserving high value workloads. In Figure 6, we show the percentage (over the total number 

of VMs submitted) of VMs deleted because of nodes failures (left) and VMs rejected because of a lack of 

resources (right). As expected, in the nosm+nomig scenario nodes failures are never killing high value 

workloads because those VMs are never scheduled on nodes running in extended mode. In our experiment 

nodes running in nominal conditions do not fail. When the full proactive policy is enabled (sm+r) high priority 

VMs are allowed to run on nodes in extended mode and thus are subject to nodes’ failures. Those priority 2 

and 3 VMs deleted are the ones for which the proactive policy is not acting fast enough as the node they are 

running on fails before the migration to a safer one is completed.  

Overall, including the rejected VMs, the sm+r scenario fails in handling ~4% of priority 3 and ~9% of priority 2 

VMs. This represents a reduction of respectively 50% and 30% with respect to the nosm+nomig case. Again, 

to show the importance of VMs migration in this context, the sm+nomig case experiences a higher number 

of deleted VMs due to nodes failures. VMs are scheduled on any node and the absence of a proactive action  

Figure 6: Percentage of VMs deleted (left) and rejected (right) grouped by priority level. 

Figure 7 Percentage of servers in nominal mode over time 
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increases the number of failed high value VMs. Interestingly, sm+nomig shows an extremely low number of 

rejections. This is due to the node failures. Since migration is not enabled, the existing VMs on failed nodes 

are destroyed which creates more room for accepting new incoming VM requests.  

At this point we can draw a preliminary conclusion: the full proactive policy further improves the utilization of 

the cluster from the point of view of the active/accepted VMs with respect to the priority-based scheduler of 

D6.3. However, the cherry on top appears when analyzing the experiment from the perspective of the compute 

nodes. The full pro-active policy is able to guarantee a better level of service compared to the priority scheduler 

while also keeping 50% of the compute nodes constantly operating in extended mode. Instead the 

nosm+nomig case keeps switching nodes to nominal to host new incoming high-priority VMs. This behavior 

is visible in Figure 7 where the scenario without resilience and node state manager approaches the end with 

64% of the nodes operating in nominal conditions.  

The extended pro-active fault tolerance support introduced in OpenStack increases the opportunity for 

improved energy efficiency at the cluster level by always operating a set of the machines always in extended 

mode. Without this support, the scheduler instead is not able to predict and avoid failures, and can’t take the 

risk of placing valuable workloads on nodes running in relaxed conditions. 

7. Conclusion 

This deliverable presents the activities carried out in the context of fault tolerance, and more precisely regarding 

proactive fault tolerance. We started by presenting the motivations behind the need for such proactive 

mechanisms. Thanks to a characterization process based on a pre-defined set of benchmarks we showed that 

reducing the voltage supply of the CPU increases the probability of failure. This drawback can limit the reduced 

consumption benefits when undervolting is applied at large scale. Simply undervolting a high number of servers 

in a datacenter could increase the aggregate probability of failure to the point where the gains are not worth 

the risk. 

The UniServer software stack introduces novel capabilities integrated in the hypervisor that expose the 

probability of failure of nodes at a given operating point. We have extended OpenStack with a novel distributed 

fault tolerance mechanism that, by accessing real-time information from the hypervisor, can take proactive 

action to save valuable workloads (e.g. migrate to a safer node). The distributed design breaks the monolithic 

management of nodes in OpenStack thereby enabling nodes to self-assess their state and proactively inform 

the central scheduler of the workloads that need to be preserved. The new fault tolerance mechanism is 

implemented in the OpenStack Nova compute manager component running on each node, and with extensions 

to the priority scheduler presented in the Deliverable 6.3. 

Our experimental evaluation shows that when the proactive fault tolerance policies are enabled, we are able 

to service the same set of virtual machines with a set of nodes constantly operating in extended mode, in 

contrast to the implementation in Deliverable 6.3 where compute nodes are switched to normal operating mode 

to host high value workloads. Even though part of the nodes in our experimental setup were always operating 

in extended margin mode, the number of high value workloads not properly serviced (deleted for failure or 

rejected) is significantly lower than with scheduler based only on the priorities of VMs. This demonstrates that 

the combination of hardware and software innovations introduced by UniServer clearly creates opportunities 

for increasing the energy efficiency of a datacenter while still guaranteeing the level of service of current 

datacenter infrastructures. 
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