
© 2019. UniServer Consortium Partners. All rights reserved Page 1 of 22

D6.5 – OpenStack Resilience on Extended

Margins Micro-Servers

Contract number 688540

Project website http://www.UniServer2020.eu

Contractual deadline Project Month 36 (M36): 31st January 2019

Actual Delivery Date 1st February 2019

Dissemination level Public

Report Version 1.0

Main Authors Christian Pinto (IBM), Srikumar Venugopal (IBM), Christos Kalogirou (UTH),

Panos Koutsovasilis (UTH)

Contributors Christos Antonopoulos (UTH), Nikolaos Bellas (UTH), Spyros Lalis (UTH),

Emmanouil Maroudas (UTH), Panagiotis Vlastaridis (UTH), Evagelia Malami,

Lev Mukhanov (QUB)

Reviewers Denis Guilhot (WSE), Christos Antonopoulos (UTH), Georgios

Karakonstantis (QUB) Charles Gillan (QUB)

Keywords Fault tolerance, extended margins, state machine, migration

Notice: The research leading to these results has received funding from the European Community’s Horizon

2020 Programme for Research and Technical development under grant agreement no. 688540

Disclaimer
This deliverable has been prepared by the responsible Work Package of the Project in accordance with the
Consortium Agreement and the Grant Agreement Nr 688540. It solely reflects the opinion of the parties to such
agreements on a collective basis in the context of the project and to the extent foreseen in such agreements.

http://www.uniserver2020.eu/

© 2019. UniServer Consortium Partners. All rights reserved Page 2 of 22

Acknowledgements

The work presented in this document has been conducted in the context of the EU Horizon 2020. UniServer

is a 42-month project that started on February 1st, 2016 and is funded by the European Commission. The

partners in the project are:

The Queen’s University of Belfast (QUB)

The University of Cyprus (UCY)

The University of Athens (UoA)

Applied Micro Circuits Corporation Deutschland Gmbh (APM)

ARM Holdings UK (ARM)

IBM Ireland Limited (IBM)

University of Thessaly (UTH)

WorldSensing (WSE)

Meritorious Audit Limited (MER)

Sparsity (SPA)

More information

Public UniServer reports and other information pertaining to the project are available through the UniServer

public Web site under http://www.uniserver2020.eu.

Confidentiality Note

This document may not be copied, reproduced, or modified in whole or in part for any purpose without

written permission from the UniServer Consortium. In addition to such written permission to copy,

reproduce, or modify this document in whole or part, an acknowledgement of the authors of the

document and all applicable portions of the copyright notice must be clearly referenced.

http://www.uniserver2020.eu/

© 2019. UniServer Consortium Partners. All rights reserved Page 3 of 22

Change Log

Version Description of change

0.1 Outline of the deliverable

0.2 Background and motivation completed

0.3 Described injecting errors (section 5.1)

0.4 Described the Failure Lifecycle and Impl.

0.5 Populated Section 3.1 (Compute Failure)

0.6 Described the forecasting model

0.7 Described experiments and the workload

0.8 Review of the document (WSE, QUB)

0.9 Review of the document (UTH)

1.0 Final draft for submission

© 2019. UniServer Consortium Partners. All rights reserved Page 4 of 22

Table of Contents
INDEX OF FIGURES ... 5

INDEX OF TABLES ... 6

Executive Summary ... 7

1. Introduction ... 8

2. Background and Motivation .. 8

2.1. Fault Tolerance in Data Centers .. 8

2.2. The UniServer Hardware Reliability Model .. 9

2.3. UniServer System Model.. 9

3. Resilience requirements for UniServer Machines ... 10

3.1. Voltage margin characterization ... 10

3.2. Failure probability ... 11

4. Proactive Fault Tolerance ... 11

4.1. Failure Lifecycle ... 12

4.2. OpenStack Implementation of the Server Lifecycle ... 13

4.3. Forecasting Failures ... 14

4.4. Scheduling Algorithm ... 15

5. Reactive Fault Tolerance .. 15

6. Evaluation ... 15

6.1. Experimental Setup .. 15

6.2. Injecting errors .. 16

6.3. Workload and Experiment Design .. 17

6.4. Results and Discussion .. 18

7. Conclusion .. 20

References .. 21

© 2019. UniServer Consortium Partners. All rights reserved Page 5 of 22

INDEX OF FIGURES

Figure 1: Voltage margins characterization for the Skylake and the X-Gene 3 CPUs.. 10

Figure 2: Proposed server failure lifecycle .. 12

Figure 3: State Machine inside the OpenStack Compute Node .. 13

Figure 4: Error Injection Process ... 16

Figure 5: Active VMs over time grouped by priority level .. 18

Figure 6: Percentage of VMs deleted and rejected grouped by priority level. ... 19

Figure 7 Percentage of servers in nominal mode over time .. 19

file:///C:/Users/2037718/Documents/UniServer_H2020/D6.5_v1.0%20(SL%20+%20CJG%20Checked).docx%23_Toc192869
file:///C:/Users/2037718/Documents/UniServer_H2020/D6.5_v1.0%20(SL%20+%20CJG%20Checked).docx%23_Toc192870
file:///C:/Users/2037718/Documents/UniServer_H2020/D6.5_v1.0%20(SL%20+%20CJG%20Checked).docx%23_Toc192871
file:///C:/Users/2037718/Documents/UniServer_H2020/D6.5_v1.0%20(SL%20+%20CJG%20Checked).docx%23_Toc192872
file:///C:/Users/2037718/Documents/UniServer_H2020/D6.5_v1.0%20(SL%20+%20CJG%20Checked).docx%23_Toc192873
file:///C:/Users/2037718/Documents/UniServer_H2020/D6.5_v1.0%20(SL%20+%20CJG%20Checked).docx%23_Toc192874
file:///C:/Users/2037718/Documents/UniServer_H2020/D6.5_v1.0%20(SL%20+%20CJG%20Checked).docx%23_Toc192875

© 2019. UniServer Consortium Partners. All rights reserved Page 6 of 22

INDEX OF TABLES

Table 1: Target hardware platforms .. 9

Table 2: Workload mix for the experiments ... 17

© 2019. UniServer Consortium Partners. All rights reserved Page 7 of 22

Executive Summary

This document describes the fault tolerance support for UniServer as developed in Task 6.3 within the Work

Package 6 (WP6) of the UniServer Project Description of Action (DoA). This is in fulfillment of Deliverable

D6.5, OpenStack Resilience on Extended Margins Micro-Servers.

The UniServer Project seeks to exploit the Voltage-Frequency-Refresh Rate (VFR) settings of processors and

memory, outside of the pessimistic values imposed by the manufacturer, in order to improve overall energy

efficiency and performance. One of the target deployments for UniServer is in cloud data centers where any

efficiency gains aggregated over thousands of machines can vastly improve a provider’s Total Cost of

Ownership (TCO). However, applying extended margins also causes the probabilities of errors and failures to

increase.

In this deliverable, we introduce a new proactive fault tolerance mechanism that uses predictions over system

error data in order to predict possible server failure and then takes actions to conserve high value workloads

from disruption. Our mechanism is decentralised and runs at the level of individual servers but is integrated

with the centralised scheduling and resource management components introduced in previous deliverables.

Our evaluations show that the proposed mechanism is able to accept more high-value VMs (16% higher than

priority scheduling without fault tolerance) while still keeping 50% of the data center in the more energy efficient

(extended margin) configuration.

© 2019. UniServer Consortium Partners. All rights reserved Page 8 of 22

1. Introduction

The UniServer project has the goal of exposing and exploiting extended margins of the underlying machine to

improve its energy efficiency and performance. The extended margins refer to voltage and frequency states

outside of the nominal guardbands for safe and correct operation imposed on processors and memory chips

by manufacturers. While this reduces the processor power consumption, it may increase the probability of

errors and failures. The UniServer project seeks to minimize the impact of these failures at all levels of the

system stack on the one hand by avoiding them – through a thorough characterization of hardware and

hardware / software interaction – and on the other hand by anticipating them and implementing mechanisms

to avoid disruptions.

Work Package 6 (WP6) aims at providing enhancements and specialized resource management policies for
OpenStack running on 64-bit ARM based micro-servers. WP6 devises techniques that improve the
management of virtual machines (VMs) on hosts with heterogeneous power and performance settings. This
heterogeneity introduces both advantages and tradeoffs that should be incorporated in managing the running
VMs. In a previous deliverable, D6.2, this work package introduced a new scheduling algorithm that assigns
high-priority, revenue generating VMs to the most reliable server machines running within guard bands while
allocating other VMs to servers running in extended margins to save on overall power consumption.
Subsequently, in deliverable D6.3, we discussed implementation of this algorithm in the OpenStack Resource
Manager to be deployed in a real datacenter.

In this deliverable, we continue this focus on server operation in datacenters. Specifically, our concern here is

to improve the resilience of the VMs to possible errors and faults, however marginal, caused by the use of

UniServer extensions to server hardware. Our response has been to design a fault tolerance mechanism that

proactively detects possible server failures by predicting over the system data obtained from the APIs provided

by the hypervisor, and takes action to conserve high-value VMs running on it. To improve the speed of

response, this mechanism is decentralised by design wherein the fault tolerance is executed at the level of

individual servers, rather than at the central controller level as it is done in present-day OpenStack.

In the next few sections, we will describe the background of our research (Section 2) and the resilience

requirements of running UniServer in the data center (Section 3). Then, we detail the design and

implementation of the proactive fault tolerance system (Section 4) and distinguish it from the reactive fault

tolerance that can be achieved in current OpenStack (Section 5). Finally, we evaluate the mechanism in a data

center setting (Section 6), discuss the results and conclude the document.

2. Background and Motivation

Dealing with hardware failures is part of the daily routine of Cloud data centre management and has direct

impact on the dependability and service level delivered to the final users. Failure can impact users’ workloads

in various manners ranging from total service disruption to reduced perceived user experience. As of today,

the most common source of failures in data centres are hard disks, followed by memory chips (~3%), and only

a negligible percentage (<< 1%) is due to CPUs [1]. This is also confirmed by the available literature that mostly

focuses on disks (both spinning and SSDs) [2] [3] [4], DRAM chips [5] [6] and GPUs [7].

2.1. Fault Tolerance in Data Centers

Failures can be treated mainly in two ways: reactively and proactively. In the first case, both the user (owner

of the applications) and the cloud infrastructure owner can apply checkpoint/restart policies. Checkpointing for

fault tolerance at the datacentre infrastructure level is not practical because it consumes precious resources

in a cluster such as storage and network bandwidth. In addition, when checkpointing at the VM level the cloud

provider does not have visibility of the application and a checkpoint could cause the application to be resumed

in a corrupted state. As an example, if one node in a distributed deployment crashes, having a snapshot of

that node does not guarantee a smooth continuation of operations as the application might not be able to

handle the loss of one of the nodes. In the Cloud domain it is more common to rely on replication of

applications/services across failure domains, while checkpointing at the application level is more common in

the HPC domain.

© 2019. UniServer Consortium Partners. All rights reserved Page 9 of 22

In this deliverable, the attention is more focused on pro-active fault tolerance, that is the ability of a system to

predict a potential future failure and immediately react to avoid disruption in users’ applications. One example

action is migration of virtual machines [8] to a trustworthy node. There are various previous works on

predictions of failures in datacenters [9] [10] [11] [12] [13] that employ techniques such as Bayesian models,

classic machine learning theories and reinforcement learning. One common point of most of the works in

literature is relying on centralized schemes based on the analysis of clusters system traces or operating system

logs, trying to correlate events with potential nodes failure. Centralized pro-active fault tolerance involves one

single entity in charge of scanning the entire cluster logs looking for patterns that indicate a potential failure.

Understanding how such an approach is not likely to scale on production-scale datacentres with hundred

thousand of nodes is immediate. Traces need to be routed to a single location in the cluster, potentially creating

a bottleneck in the network. Also, the single entity in charge of failures prediction might not be fast enough in

preventing the failure of a node because busy in analysing the cluster’s logs.

2.2. The UniServer Hardware Reliability Model

In Uniserver, hardware errors are directly exposed to the various software layers running on it via a dedicated

interface. Having direct access to hardware counters is a unique opportunity for the cloud management

software to perform informed decision based on the current status of each node. The work described in this

deliverable moves the fault prediction process from being performed by the centralized cloud software to a

single compute node, as an extension of OpenStack Nova compute. Each Nova compute agent is in fact

capable of periodically monitoring the status of the hardware and independently taking decisions that aim at

minimizing the impact of a potential failure on the running workloads. The extended nova agent periodically

queries hypervisor interface and, using the UniServer CPU and Memory fault model, predicts node failures.

The CPU and Memory fault models, and the node state changes process, are described in the next sections.

To the best of our knowledge, this is the first attempt implementing such distributed pro-active fault tolerance

in OpenStack.

Table 1: Target hardware platforms

Parameter Intel platform ARM platform

Architecture x86-64 (Skylake) ARMv8 (Ampere

X-Gene 3)

#Cores 4 32

TDP(W) 80 125

Technology 14nm 16nm

Max. Freq. 3.3 GHz 3.0 GHz

Cache Size 8 MB 32 MB

Memory 32 GB 128 GB

2.3. UniServer System Model

The UniServer project envisions a system model where both hardware and software present features that are

not available in today’s production datacentres. From the hardware standpoint, each server will expose

extended margins of the underlying hardware to improve energy efficiency. The extended margins refer to

voltage and frequency states outside of the nominal guardbands for safe and correct operation imposed on

processors and memory chips by manufacturers. Higher energy efficiency comes however at the price of

increased probability of errors or failures. To leverage such new capabilities, the software running on top of a

UniServer machine is modified accordingly. At the lower level, the Hypervisor (KVM in the case of UniServer)

is extended to expose switching the hardware from nominal operating conditions to extended margins, and

vice-versa. In addition, an extensive set of probes is exposed as well to monitor for symptoms of errors in both

CPU and memory DIMMs.

As described in Deliverable 6.3, we have introduced a set of extensions to the OpenStack cloud management

framework to benefit from the unique UniServer hardware features. A novel Resource Manager was developed

to be coupled with the OpenStack Scheduler and enable scheduling decisions according to the operating point

© 2019. UniServer Consortium Partners. All rights reserved Page 10 of 22

of each node in the datacentre. The modified OpenStack scheduler is able to distinguish between virtual

machines with different priorities, assigning high priority ones only to nodes operating in nominal conditions.

Low priority VMs can be assigned to any node regardless of its operating conditions. This strategy is a first

strategy to cope with a higher probability of errors when running in extended margins mode. The main idea is

that high priority VMs generate more revenue and thus should not be subject to the possibility of errors or

failures. The Scheduler coupled with the Resource Manager is able to dynamically change the operating mode

of a node to obtain the best trade-off between minimising energy consumption and minimising the number of

high priority VMs being rejected at scheduling time.

In this deliverable, we are taking a step forward into further exploiting the energy efficiency gains of a UniServer

enabled machine, by using the hardware probes exposing hardware monitoring information. Virtual machines

are scheduled on any node regardless of its operating mode, placing the bet of scheduling high priority virtual

machines also on nodes with higher probability of failure. During execution, each node is constantly monitoring

the errors detected with the goal of predicting future failures. If a failure is predicted, a corrective action is taken

by the node itself with the goal of keeping the high priority VMs always functional. If a node is unreliable

because a fault has been predicted, it will immediately inform the central scheduler that will not consider it for

further scheduling events of high priority VMs.

3. Resilience requirements for UniServer Machines

As mentioned previously, UniServer’s unique approach elevates the probability of errors appearing in the

hardware, and thus requires specific fault tolerance mechanisms. In the following subsections, the risk of failure

from the processor due to running in extended margins is quantified.

The probability of failure when a processor is running in the extended margins is illustrated using a case-study

with real hardware platforms, including commercially available CPUs used in modern servers. This analysis is

targeting x86 (Intel Skylake family) and ARM64 (APM XGene3) server machines. Table 1 summarizes the

target systems used for this characterization. In the following, we explain how we determine the parameters

that capture the behaviour of a node and, specifically, the extended margins operating points and the failure

probability when operating at such points.

3.1. Voltage margin characterization

In the Skylake processor, the voltage-frequency operating point is dynamically controlled by the P-State

manager / DVFS governor. For this evaluation, four frequency points are selected at 3.3, 3.0, 2.5 and 2.0 GHz,

Figure 1: Voltage margins characterization for the Skylake (left) and the X-Gene 3 CPUs (right).

The top (green) area of the bars denotes the range of sub-nominal voltages that did not result into

any failure. The lower (blue) area of the bars are the voltages that lead to failures for some or all

applications.

© 2019. UniServer Consortium Partners. All rights reserved Page 11 of 22

which cover the range of the most common frequencies applied in the balanced mode of the governor. The

average nominal supply voltages for these frequencies are 1147, 1075, 922 and 850 mV, respectively.

The X-Gene 3 processor, targeting micro-servers, does not support DVFS. In nominal operation it allows only

frequency scaling. We choose four frequency points, at 3.0, 2.2, 1.3 and 0.4 GHz, covering the entire range

that is supported by this CPU. In all cases, the nominal supply voltage equals 880 mV.

For each nominal operating point (𝑉, 𝑓), we experimentally determine a corresponding extended margins

operating point (𝑉𝑥 , 𝑓). We use 24 benchmark applications from the SPECCPU 2006 suite [14] that stress

different CPU components. An experiment consists of running each application for a continuous period of 10

minutes (if needed, we run the application several consecutive times). We perform a series of experiments,

where we keep the CPU frequency fixed to 𝑓, and gradually reduce the CPU voltage in steps of 10 mV, starting

from the nominal voltage 𝑉. We stop when one of the experiments leads to any type of abnormal behaviour

(failure) and identify the immediately preceding voltage level (that did not result into a failure) as 𝑉𝑥 for the

frequency 𝑓.

Figure 1 illustrates the degree of undervolting that can be applied to each nominal operating point of the

Skylake and X-Gene 3 CPUs. For the extended operating point at each frequency, we choose the lowest

voltage within the green area, i.e., the lowest sub-nominal voltage that did not lead to any failure. For the

Skylake CPU, the sub-nominal voltages for the four frequency points of 3.3, 3.0, 2.5 and 2.0 GHz are 929,

865, 741 and 666 mV, respectively. For the X-Gene 3 CPU, the sub-nominal voltages for the four frequency

points of 3.0, 2.2, 1.3 and 0.4 GHz are 840, 830, 790 and 790 mV, respectively. The characterization process

took about 32 hours for both machines. While this amount of time is not negligible, such a characterization

needs to be performed once, when adding a new node to the datacentre, and then only very sporadically to

capture aging effects.

3.2. Failure probability

When modern CPUs operate at nominal voltage-frequency points, hardware failures are extremely rare [15].

Failures are expected to occur more frequently if the CPU operates at a non-nominal point.

In the above experiments, when we operate the CPU at extended margins we choose the largest sub-nominal

voltage that does not lead to any failures. Afterwards, we validate the safety of the identified sub-nominal

voltages by executing multiple experimental campaigns of random workloads at each extended operating point

for 6 consecutive days each.

Being unrealistically pessimistic, we assume that the 6 days of execution time without any errors is the mean

time to failure (MTTF) for all tested extended margin points. This corresponds to a failure rate of one failure

every 518,400 seconds, which -- again pessimistically -- we assume to be fatal, ignoring the possibility of

correctable errors [16]. This failure rate is then used to estimate the probability of failure 𝑃𝑓𝑎𝑖𝑙𝑉𝑥,𝑓 within a

scheduling period for a node that operates at any of the extended margin points (𝑉𝑥 , 𝑓). For example, assuming

a scheduling period of 300 seconds, if a node is configured to operate at extended margins, the failure

probability is 300/518,400 = 0.000579. Even with this relatively high failure probability, educated undervolting

can provide a significant increase of the profit margin for the infrastructure provider.

4. Proactive Fault Tolerance

In this section, we describe how, starting from a known failure model (e.g., the UniServer failure model

described in the previous section), the OpenStack Ocata cloud management software has been modified to

proactively detect upcoming failures and start rescue actions for high value workloads.

A new component has been introduced in OpenStack to track each compute node’s errors rate and, by

exploiting the known error model, identify potential failures and act accordingly. Each UniServer compute node

exports the count of errors identified by the hypervisor via the libvirt API (Deliverable 5.3). In addition, an error

injection module based on a pre-defined and configurable errors distribution was developed to allow testing at

scale and model failures tracking on non UniServer machines.

© 2019. UniServer Consortium Partners. All rights reserved Page 12 of 22

4.1. Failure Lifecycle

In previous deliverables, we focused on the datacentre scheduler which resides in the central controller. Failure

tolerance can be implemented at the central controller. However, as we discussed previously, centralised

solutions do not scale well for datacentres with thousands of nodes. Therefore, we shift our focus in this

deliverable to implement fault tolerance at the level of individual nodes. This brings us the following

advantages:

1. Each node can monitor its own state and take proactive measures anticipating failure without involving

the central controller. This reduces the latency of actions and improves resilience of the infrastructure.

2. We can reduce the amount of monitoring data that needs to be transferred from the nodes and stored

in the central controller.

Hence, we have decided to implement our fault tolerance at the level of individual compute machines in the

datacentre. Figure 2 conceptually shows the fault-driven lifecycle of a server machine in a cloud datacentre.

Current datacentre resource management systems consider a node that is communicating with the central

node to be in the available state, while a node that cannot be contacted due to a system crash or a network

partition is categorised as unavailable. In this research, we have introduced the notion of a reliable state, in

which the server is working as intended, and an unreliable state, in which the server is communicating and

able to instantiate VMs but there is a high probability of system failure in a specific time horizon.

Figure 3 shows the transition between the states. Initially, when a server is brought up, it is in the available

and reliable state. When an error is detected and the probability of failure is predicted to be higher, then the

server shifts into the unreliable yet available state. When the server crashes or is not communicating, then it

is considered to be unavailable and offline. When the server is brought back online, it is initially considered

unreliable, due to its history. After a short maintenance period, if no errors are detected, then it is switched to

a reliable state.

This conceptual lifecycle is useful for managing the server’s lifecycle without involving the central controller as

has been the case until now. This enables managing the state of the application VMs that are running on top

of the server and safeguarding them from sudden changes in server state.

Reliable

Unavailable

Unreliable

Figure 2: Proposed server failure lifecycle

© 2019. UniServer Consortium Partners. All rights reserved Page 13 of 22

4.2. OpenStack Implementation of the Server Lifecycle

Figure 3 shows the implementation of the Server Failure Lifecycle in the OpenStack Compute manager. The

Compute Manager keeps track of a server’s resources such as CPUs, memory, hard disk space and network

bandwidth, and also manages the hypervisor (e.g. KVM) that instantiates and operates the virtual machine

instances on the server. When a VM is instantiated or destroyed, the Compute Manager reduces or augments

the available resources by the amount requested by the VM and updates the database to reflect its current

resource levels. The Compute Manager also creates and manages the virtual networks to which the VMs are

connected. It communicates with the central controller to update the status of the physical server, and to initiate

any VM migrations or evacuations.

Therefore, given the Compute Manager’s centrality to managing the server resources, we decided to

implement the Server Failure Lifecycle state machine in this component. Figure 3 illustrates the implementation

and the control flow enabled by the state machine.

When a server is initialised (either from a cold start or a reboot), it is assumed to be Available. In case of a

reboot or restart, if the server had switched to Unreliable/Unavailable prior to crashing, then its state is changed

to Unreliable. Otherwise, the server is considered as Reliable.

During the server’s operation, the Compute Manager constantly polls the system through the hypervisor for

any new errors reported in the CPU, memory or hard disks. If so, these events are fed into the Predictor, which

is a new component that we have introduced in the Compute Manager. The Predictor takes in a series of errors

and provides a forecast with the probability of system failure in a specific time horizon. If this probability is

higher than a (configurable) threshold, the server is transitioned into the Unreliable state. If the errors continue

and the Predictor revises the failure probability to be higher than another (configurable) threshold, then the

server is transitioned into Unavailable state and does not communicate with the central controller.

Our Compute Manager is able to follow different strategies for each transition. In the current implementation,

the transition from Reliable to Unreliable triggers a process that examines the priority of the VMs currently

running on the server. The high-priority VMs are queued to be migrated off to other, reliable nodes. This

migration can be done either live or offline. We have chosen live migration to preserve the state of high-priority

VMs. Current OpenStack implementation of migration requires that the Compute Manager sends a request to

the central scheduler which replies back with a target host for the VM. The Compute Manager then initiates

the migration process.

If errors continue to happen while the server is in the Unreliable state, failure becomes a real possibility and

evasive actions need to be taken. When the Predictor forecasts a high probability of error, then the server is

transitioned into the Unavailable state. This prevents the central controller from allocating any further VM

instance requests to the server. The low priority VMs running on the server are shut down and marked as

deleted. In the Unreliable state, there are no high-priority VMs running on the server.

There is a probability that server failure might occur at any time, even when it is in the Reliable state although

it is more likely that this would happen in the Unreliable state, since errors have already started being apparent

Figure 3: State Machine inside the OpenStack Compute Node

Reliable

Unreliable

Available

Unavailable

libvirt

Compute Manager

Predictor
migrate_vms

evacuate_vms

forecast events

HW Faults/error events

© 2019. UniServer Consortium Partners. All rights reserved Page 14 of 22

at the hardware level. In case of abrupt failure, current OpenStack failure mechanisms are applied, wherein a

server (or its Compute service) is marked as disabled if it does not report to heartbeat messages from the

central controller. Our implementation of the Unavailable state provides a more graceful method of managing

this disruption and provides up-to-date information to the central controller.

When the server is brought back to Available state, after a period of maintenance (for example), it is set into

Unreliable due to its previous history. This implies that no high-priority VMs are scheduled on to the server

unless it is monitored through a (configurable) probationary period and reported as not producing any errors.

According to the bathtub curve, errors are more prevalent at the beginning and the end of the server lifecycle.

Hence, this method manages the risk of server failure when it is brought back from stasis after a crash.

4.3. Forecasting Failures

The Predictor provides a short-term forecast on the probability of system failure. However, at the hardware

level, we obtain data only on the number of errors emanating from the hardware. Therefore, the challenge is

to construct a statistical pattern out of this data that can aid us in determining the probability of system failure.

While several machine learning methods have been proposed for predicting server failures, these are not

suitable for deployment in the unique environment in which UniServer operates. Firstly, these have been

mostly developed for modelling server crashes due to hard disk failures. The UniServer model envisages errors

emanating from the processor and memory due to operating servers at voltages outside of the manufacturer

recommended guardbands. This renders models based on analysis of hard disks’ SMART data to be

inapplicable to our context.

Secondly, the extended voltage margins outside of the guardbands are unique for each processor. This runs

counter to central machine learning models that assume that the data obtained from each server are uniform

and can be coalesced into a single model. Hence, each individual server must have its own custom parameters

for the prediction model.

Lastly, most of these models require data to be gathered from the servers and analysed in the central controller.

These models are heavyweight and require significant computational resources to produce predictions. Our

design requires that each server predict its own state. Hence, the models at individual servers must be

lightweight so that the capacity of the server to host VMs is not impacted.

Given the above requirements, we opted for a simple statistical combination of moving averages and linear

regression to construct a prediction model to forecast server failure. Moving averages with overlapping

windows dampen the effect of sudden spikes (such as a large number of errors). Linear regression (Ordinary

Least Squares) is a standard statistical method to predict the trend in a series of observations.

Therefore, given a list of 𝑛 sequential error observations, 𝐸 = {𝑜0, 𝑜1, … 𝑜𝑛−1}, the array of moving averages

over a window of size 𝑤 (𝑤 < 𝑛) is:

𝐸𝑚 = {𝑎0, 𝑎1,, 𝑎𝑛−𝑤+1}, wherein 𝑎𝑘 =
1

𝑤
∑ 𝑜𝑖

𝑘+𝑤−1
𝑘

We then compute the slope of the simple linear regression line passing through the moving averages by using

the standard formula:

𝑠𝑙𝑜𝑝𝑒 =
𝑚 ∑ 𝐸𝑚.𝑋−∑ 𝐸𝑚.∑ 𝑋

𝑚 ∑ 𝑋2−(∑ 𝑋)2 , where 𝑚 = 𝑛 − 𝑤 + 1, and 𝑋 = {0, 1, ⋯ 𝑚}

Briefly, a positive slope implies that the number of errors and their magnitude are increasing, which indicates

that the system is unreliable. A slope that is zero or close to it indicates one of three scenarios – zero errors

(stable, reliable operation), intermittent errors but no apparent trend (unstable equilibrium, unreliable

operation), or consistent production of errors (imminent failure, soon to be unavailable). We use the cumulative

sum of errors to distinguish between these three situations. A negative slope indicates that the system has left

a period of unreliable operation and is now reliable.

In our implementation, we observe and gather the errors emanating from the hardware and their timestamps

into an array that we input into the model which returns the value of the slope. This is used to drive the state

change, if needed.

© 2019. UniServer Consortium Partners. All rights reserved Page 15 of 22

4.4. Scheduling Algorithm

Deliverable D6.2 introduced a priority-based scheduling algorithm that we subsequently implemented into

OpenStack (deliverable D6.3). Briefly, the scheduler aims to allocate high-priority or high value VM requests

(these are considered equivalent) to the most reliable hosts so that these are never disrupted.

In our previous work, we configured a portion of the servers in a datacentre in extended margins (outside of

the guardbands) while the rest of the servers were left operating in the conservative nominal (within

guardbands) settings. The former are more power efficient while being considered less reliable than the latter.

Therefore, the scheduler would place high-priority VMs on to the hosts running in nominal mode. When there

are no more servers running in nominal mode, the scheduler flips selected servers running in the extended

mode to nominal and evicts low-priority VMs from these nodes to satisfy high-priority requests. The downside

of this flipping process is that it may require servers to be restarted to safeguard against latent errors, and

disrupts the normal operation of these servers.

By introducing the reliable and unreliable states along with a proactive Predictor whose forecasts drive the

transitions between the states, we have eliminated the requirement for servers to be locked into a certain

configuration until resource requirements drive the change. When high-priority VMs arrive, the scheduler now

searches for servers that are in the Reliable state, regardless of whether they are running in the nominal or

extended mode. If there is no capacity in existing Reliable servers, then the scheduler evicts low-priority VMs

from selected Reliable servers until enough resources are freed.

When a server transitions from Reliable to Unreliable due to errors, the scheduler receives requests for

migrating high-priority VMs that are hosted on the server. The scheduler then identifies a target host using the

mechanism described previously. The actual migration is handled by the OpenStack Compute agents running

on the servers.

5. Reactive Fault Tolerance

Reactive fault tolerance is the ability of recovering the VM previously executing on a failed node. This strategy

enters into play if there was no pro-active fault tolerance policy in the datacentre or if that was not effective

enough to migrate high value VMs before the failure happens.

In the context of UniServer, reactive fault tolerance is implemented by re-using the priority-based scheduler

introduced in Deliverable 6.3. Upon the failure of a node, it is possible to access the list of VM instances

previously running on that node. The policy to react to the failure is to re-submit all the VMs to the priority

scheduler respecting the same priority levels originally assigned by the user. Re-scheduled VMs are treated

as new ones and the scheduling decision will be subject to both the current availability of resources as well as

the current operating conditions of all the nodes.

Understanding if a node is available is a trivial task in OpenStack as each Nova Compute service periodically

sends a heartbeat signal to the Nova Conductor. This information is in turn updated into the OpenStack Nova

database. A periodic task scans the compute services in the Nova database to identify failed nodes. When a

failure is detected all the VMs are re-submitted to the priority scheduler using the Nova evacuate functionality

that automatically re-deploys all the VMs formerly running on the failed node.

6. Evaluation

In this section, we describe the experimental evaluation of the fault tolerance mechanisms introduced in this

deliverable.

6.1. Experimental Setup

The proactive fault tolerance mechanism introduced in this document requires a full datacentre with shared

storage to be set up in order to demonstrate its utility. While the UniServer project is based on Ampere’s XGene

servers with ARM CPUs, the evaluation of the OpenStack fault tolerance mechanisms required more machines

than the XGene servers currently available to all the project partners. Hence, we have decided to use virtual

© 2019. UniServer Consortium Partners. All rights reserved Page 16 of 22

clusters to emulate the operation of a datacentre with the fault tolerance mechanisms applied. Our changes to

OpenStack have been verified to run on top of the two XGene servers currently installed in IBM Research –

Ireland. Therefore, the results of this evaluation would be consistent if it was conducted on a similarly-sized

XGene cluster

We have used the nested virtualization [17] feature of KVM to generate a virtual cluster on a powerful compute

server. The physical machine is a 64-bit IBM Power8E server with 192 cores and 1TB of RAM. We have

created a cluster of 21 VMs, each with 12 cores and 40GB RAM, on which we installed and configured

OpenStack modified with the fault tolerant mechanism presented previously. One of the VMs is configured as

the controller node, hosting components such as the scheduler, conductor, network manager and disk image

service. The other 20 VMs are used to emulate compute nodes configured with the State Machine described

previously. We can create VMs on top of these to emulate the operation of a set of physical machines in a

cluster.

Many of the advanced features enabled by UniServer for the XGenes, such as the extended mode, were not

available to us in the virtual cluster. Also, there would be no errors generated in the Power processor as

envisaged by the UniServer. Even if we were able to run on an equivalent number of XGenes, we would have

to wait for a long time before an error is generated in the extended mode. Hence, for our experiments, we had

to create a synthetic process to inject errors to trigger the fault tolerance processes. The next section describes

this process in more detail.

6.2. Injecting errors

For the testing at scale, the pro-active fault tolerance OpenStack components were evaluated on a set of

machines that do not provide facilities for accessing the errors counts at the CPU and memory level. Instead,

each node generates errors according to a well-known distribution, using an ad-hoc software component that

injects errors into the OpenStack Nova libvirt driver. To validate the actual benefit of the new proactive fault

tolerance component developed for OpenStack, a fault injection system has been developed as well, modelling

the arrival of correctable errors on each compute node. Such component is directly interfaced to the UniServer

libvirt API by providing a custom implementation of the getErrorsUniserver()function. Each time the

function is invoked, errors are injected and generated from the Weibull distribution that is renown of being

representative of hardware components failures over time [18].

The process of failure generation is composed of 5 phases, depicted in Figure 4. In phase 1, the Weibull

distribution is used to generate a pre-defined number of values between 0 and 1. This is an offline operation

that is performed before starting OpenStack. The parameters of the distribution are configurable during file

creation. The file generated during this first phase is then fed to the failure injection task integrated within

OpenStack Nova. At instantiation of OpenStack, a dedicated thread is created to take care of the injection of

faults to the node. This thread periodically reads a value (phase 2) from the file described above and applies

to it a filter (phase 3) implemented as a step function, to decide whether an error is to be injected or not. As

visible in Figure 4, the step function uses two different thresholds to model nominal and extended margins

operating conditions. In other words, the threshold is used to model a higher likelihood of error when the node

Figure 4: Error Injection Process

© 2019. UniServer Consortium Partners. All rights reserved Page 17 of 22

is operating in extended margins. Errors are injected when the value read from the file is greater than or equal

to the threshold. The model developed for this deliverable envisions the possibility to inject one, two or three

errors at a time. The number of errors is selected using a pre-defined static probability (phase 4). For the sake

of simplicity, the injection task generates only one class of errors (e.g., CPU) as opposed to the various error

classes tracked by hypervisor.

After the error injection task computes the number of errors to be injected, the value is stored inside the libvirt

driver module of OpenStack Nova (phase 5). Upon a call to the getErrorsUniserver, errors are returned

from the local value stored in the libvirt driver and not from the hypervisor.

Via the OpenStack Nova configuration, it is possible to set the interval at which errors are injected into the

node, the probabilities used to choose the number of errors to be injected, the error threshold for both nominal

and extended margin operation, and the path to the file holding the values generated from the Weibull

distribution.

6.3. Workload and Experiment Design

Our aim here is to highlight the changes that are brought by the fault-tolerance approach described previously.

We have used the same workload model used in the previous deliverable (D6.3) that was used to evaluate the

OpenStack Resource Management and Scheduling under UniServer conditions. We are repeating the

workload description here for sake of completeness.

The workload was devised to be a stream of VM requests arriving at the resource manager during a particular

interval. We created a workload trace of 256 VM requests with an inter-arrival time of 30 secs. We assigned

priorities randomly to these requests. Table 2 shows the distribution of the priorities as well as the resource

requirements for VM belonging to each priority class.

Table 2: Workload Mix for the Experiments

Priority Flavour (resource req.) Share of Total

0 Small – 1 CPU, 1GB RAM 40%

1 Medium – 2 CPU, 2 GB RAM 30%

2 Large – 4 CPU, 4 GB RAM 20%

3 XLarge – 8 CPU, 8 GB RAM 10%

The workload mix that we have chosen reflects the standard workload for any cloud provider wherein there

are lots of requests to create small VMs with low priority, while the larger, high-priority, and more profitable

VMs are rarer. We have also defined a lifetime for VMs with priority 0 and 1 where the former were alive for 3

minutes while priority 1 VMs would be killed after a duration randomly drawn between 3-6 minutes. This reflects

the scenario in which VMs are initialised to execute a single analytics or a monitoring task and are then

shutdown.

We have created custom metrics to reflect the measures that we consider to be of interest to the fault-tolerant

approach. These are:

1. Number of active VMs over time

2. Number of VM requests rejected by the scheduler

3. Number of servers in nominal and extended margins over experiment duration

Metrics 1, and 2 reflect the effect of the fault tolerance mechanisms on the workload, especially on the revenue-

generating high-priority VMs while metric 3 focuses on the power efficiency of the physical infrastructure.

These metrics were computed using custom scripts that mined the log files in the different servers and

database entries created over the course of the experiment.

At the beginning of the experiment we configure 50% of the nodes to operate in extended mode. Each compute

node runs one instance of the errors generation component described in Section 6.2. The series of numbers

© 2019. UniServer Consortium Partners. All rights reserved Page 18 of 22

used to decide when to inject an error (Weibull) is kept constant across all scenarios for the sake of comparison

of the results.

6.4. Results and Discussion

The experiment described in the previous section was run to compare the three following scenarios:

1. Node state and resiliency manager enabled (sm+r)

2. Node state and resiliency manager with migration disabled (sm+nomig)

3. Priority scheduler without state and resiliency manager (nosm+nomig)

In the first two scenarios, we take the bet of scheduling high value VMs on any node regardless of its operating

mode. Nodes are assigned an operating mode at the beginning, and it is kept unchanged during the whole

experiment. The state manager on each compute node is constantly monitoring the errors logged by the

hypervisor and predicts the node state (the four in Figure 2). When a node transitions to Unreliable state, all

the VMs with priority of 2 or more are migrated to a safer node. In case of Unavailable node all the workloads

currently running are killed to simulate an abrupt node failure. The resiliency manager integrated in the

scheduler allows high value VMs (priority 2 or more) to be scheduled only on Available or Reliable nodes.

The third scenario uses only the priority scheduler introduced in Deliverable 6.3. The priority scheduler

allocates VMs on compute nodes according to their priority. VMs with priority 2 or 3 (high value) are only

scheduled on nodes operating in nominal conditions. Lower priority VMs can be scheduled on nodes

regardless of their current operating mode. In the case where there are no nodes in nominal state that can

host the VM the priority scheduler switches a node (if available) to nominal conditions and schedules the VM

on it. In this case the state manager on each node is used only to model nodes failure when transitioning to

state Unavailable. No actions are taken for other state transitions. In all scenarios, VMs with priority of 2 or

more can cause the eviction of one or more lower priority VM when all the resources in the cluster are occupied

by other VMs.

The idea behind the three scenarios is to show the effectiveness of a proactive fault-tolerance mechanism

coupled with the opportunities for reduced energy consumption introduced by UniServer. In addition, the first

two policies differ only on the proactive action taken in case of Unreliable nodes; sm+r migrates VMs off

unreliable nodes, while sm+nomig does not. Our goal here is to highlight the importance of the proactive action

in guaranteeing high availability for high priority jobs.

Figure 5: Active VMs over time grouped by priority level. Each chart represents a

different scenario: sm+r (left), sm+nomig (center), nosm+nomig (right)

© 2019. UniServer Consortium Partners. All rights reserved Page 19 of 22

The first metric we analyse is the number of active VMs (percentage over the total number of VMs scheduled

in the experiment) over time (Figure 5) grouped by instance priority. The first thing to note is that the proactive

fault tolerance (sm+r) mechanism guarantees a higher number of high value VMs over time with a peak of

16% of the VMs running with priority 3. The priority scheduler (nosm+nomig) instead is not able to react to

node state changes and loses precious workloads due to node failures. To validate the importance of a

proactive action the sm+nomig scenario shows how disabling migration of workloads brings the active high

priority VMs count down, with a similar trend measured with the priority scheduler. The resiliency manager

alone is not able to preserve as many high value workloads as the case where resiliency manager and compute

state node manager work together. The proactive migration of VMs is coping with the potential failure of nodes

and avoids high priority workloads to fail.

Interesting to note is how the number of active priority 0 VMs is particularly high in the sm+nomig case (mid

chart in the figure). This is a result of the failure of nodes that cause the destruction of high priority VMs, making

room for new incoming VMs. Priority 0 VMs are the most frequently scheduled and quickly dominate the

experimental cluster. When migration is enabled (left chart) the migration causes the eviction of low priority

VMs in favour of higher priority ones.

The activity of VMs by itself does not give a complete understanding of how effective is the proactive fault

tolerance policy in preserving high value workloads. In Figure 6, we show the percentage (over the total number

of VMs submitted) of VMs deleted because of nodes failures (left) and VMs rejected because of a lack of

resources (right). As expected, in the nosm+nomig scenario nodes failures are never killing high value

workloads because those VMs are never scheduled on nodes running in extended mode. In our experiment

nodes running in nominal conditions do not fail. When the full proactive policy is enabled (sm+r) high priority

VMs are allowed to run on nodes in extended mode and thus are subject to nodes’ failures. Those priority 2

and 3 VMs deleted are the ones for which the proactive policy is not acting fast enough as the node they are

running on fails before the migration to a safer one is completed.

Overall, including the rejected VMs, the sm+r scenario fails in handling ~4% of priority 3 and ~9% of priority 2

VMs. This represents a reduction of respectively 50% and 30% with respect to the nosm+nomig case. Again,

to show the importance of VMs migration in this context, the sm+nomig case experiences a higher number

of deleted VMs due to nodes failures. VMs are scheduled on any node and the absence of a proactive action

Figure 6: Percentage of VMs deleted (left) and rejected (right) grouped by priority level.

Figure 7 Percentage of servers in nominal mode over time

© 2019. UniServer Consortium Partners. All rights reserved Page 20 of 22

increases the number of failed high value VMs. Interestingly, sm+nomig shows an extremely low number of

rejections. This is due to the node failures. Since migration is not enabled, the existing VMs on failed nodes

are destroyed which creates more room for accepting new incoming VM requests.

At this point we can draw a preliminary conclusion: the full proactive policy further improves the utilization of

the cluster from the point of view of the active/accepted VMs with respect to the priority-based scheduler of

D6.3. However, the cherry on top appears when analyzing the experiment from the perspective of the compute

nodes. The full pro-active policy is able to guarantee a better level of service compared to the priority scheduler

while also keeping 50% of the compute nodes constantly operating in extended mode. Instead the

nosm+nomig case keeps switching nodes to nominal to host new incoming high-priority VMs. This behavior

is visible in Figure 7 where the scenario without resilience and node state manager approaches the end with

64% of the nodes operating in nominal conditions.

The extended pro-active fault tolerance support introduced in OpenStack increases the opportunity for

improved energy efficiency at the cluster level by always operating a set of the machines always in extended

mode. Without this support, the scheduler instead is not able to predict and avoid failures, and can’t take the

risk of placing valuable workloads on nodes running in relaxed conditions.

7. Conclusion

This deliverable presents the activities carried out in the context of fault tolerance, and more precisely regarding

proactive fault tolerance. We started by presenting the motivations behind the need for such proactive

mechanisms. Thanks to a characterization process based on a pre-defined set of benchmarks we showed that

reducing the voltage supply of the CPU increases the probability of failure. This drawback can limit the reduced

consumption benefits when undervolting is applied at large scale. Simply undervolting a high number of servers

in a datacenter could increase the aggregate probability of failure to the point where the gains are not worth

the risk.

The UniServer software stack introduces novel capabilities integrated in the hypervisor that expose the

probability of failure of nodes at a given operating point. We have extended OpenStack with a novel distributed

fault tolerance mechanism that, by accessing real-time information from the hypervisor, can take proactive

action to save valuable workloads (e.g. migrate to a safer node). The distributed design breaks the monolithic

management of nodes in OpenStack thereby enabling nodes to self-assess their state and proactively inform

the central scheduler of the workloads that need to be preserved. The new fault tolerance mechanism is

implemented in the OpenStack Nova compute manager component running on each node, and with extensions

to the priority scheduler presented in the Deliverable 6.3.

Our experimental evaluation shows that when the proactive fault tolerance policies are enabled, we are able

to service the same set of virtual machines with a set of nodes constantly operating in extended mode, in

contrast to the implementation in Deliverable 6.3 where compute nodes are switched to normal operating mode

to host high value workloads. Even though part of the nodes in our experimental setup were always operating

in extended margin mode, the number of high value workloads not properly serviced (deleted for failure or

rejected) is significantly lower than with scheduler based only on the priorities of VMs. This demonstrates that

the combination of hardware and software innovations introduced by UniServer clearly creates opportunities

for increasing the energy efficiency of a datacenter while still guaranteeing the level of service of current

datacenter infrastructures.

© 2019. UniServer Consortium Partners. All rights reserved Page 21 of 22

References

[1] G. Wang, L. Zhang and W. Xu, "What Can We Learn from Four Years of Data Center Hardware

Failures?," in International Conference on Dependable Systems and Networks (DSN), 2017.

[2] E. Pinheiro, W.-D. Weber and A. Barroso, "Failure Trends in a Large Disk Drive Population," Usenix

FAST, 2007.

[3] B. Schroeder and G. A. Bibson, "Disk failures in the real world: What does an MTTF of 1,000,000 hours

mean to you?," in Usenix FAST, 2007.

[4] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield, A. Sivasubamaniam, B. Cutler, J. Liu, B.

Khessib and K. Vaid, "SSD failures in datacenters: What, when and why?," ACM Sigmetrics Performance

Evaluation Review, vol. 44, no. 1, pp. 407-408, 2016.

[5] J. Meza, Q. Wu, S. Kumar and O. Mutlu, "evisiting memory errors in large-scale production data centers:

Analysis and modeling of new trends from the field," in International Conference on Dependable Systems

and Networks (DSN), 2015.

[6] B. Schroeder, E. Pinheiro and W.-D. Weber, "DRAM errors in the wild: a large-scale field study," ACM

SIGMETRICS Performance Evaluation Review, vol. 37, no. 1, pp. 193-204, 2009.

[7] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai, D. Oliveira, D. Londo, N.

DeBardeleben and P. Navaux, "Understand ing GPU errors on large-scale HPC systems and the

implications for system design and operation," in HPCA, 2015.

[8] D. Ruprecht, D. Jones, D. Shiraev, G. Harmon, S. Maya, M. Krebs, M. Baker-Harvey and T. Sanderson,

"VM Live Migration At Scale," in International Conference on Virtual Execution Environments (VEE),

2018.

[9] Z. Xue, X. Dong, S. Ma and W. Dong, "A Survey on Failure Prediction of Large-Scale Server Clusters,"

in International Conference on Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing (SNPD 2007), 2007.

[10] Y. Watanabe, H. Otsuka, M. Sonoda, S. Kikuchi and Y. Matsumoto, "Online failure prediction in cloud

datacenters by real-time message pattern learning," in International Conference on Cloud Computing

Technology and Science, 2012.

[11] E. Chuah, A. Jhumka, S. Narasimhamurthy, J. Hammond, C. Browne and B. Barth, "Linking Resource

Usage Anomalies with System Failures from Cluster Log Data," in nternational Symposium on Reliable

Distributed Systems, 2013.

[12] Y. Watanabe and Y. Matsumoto, "Online Failure Prediction in Cloud," Fujitsu scientific & technical journal,

vol. 50, no. 1, pp. 66-71, 2014.

[13] X. Chen, C.-D. Lu and K. Pattabiraman, "Failure Prediction of Jobs in Compute Clouds: A Google Cluster

Case Study," in International Symposium on Software Reliability Engineering Workshops, 2014.

[14] J. L. Henning, "SPEC CPU2006 benchmark descriptions," ACM SIGARCH Computer Architecture

News}, vol. 34, pp. 1--17, 2006.

[15] K. V. Vishwanath and N. Nagappan, "Characterizing cloud computing hardware reliability," in

Proceedings of the 1st ACM symposium on Cloud computing, ACM, 2010, pp. 193--204.

© 2019. UniServer Consortium Partners. All rights reserved Page 22 of 22

[16] A. Bacha and R. Teodorescu, "Using ECC Feedback to Guide Voltage Speculation in Low-Voltage

Processors," in 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, 2014.

[17] e. a. M. Yehuda, "The turtles project: design and implementation of nested virtualization," in Proceedings

of the 9th USENIX conference on Operating systems design and implementation, 2010.

[18] A. C. Cohen, "Maximum likelihood estimation in the Weibull distribution based on complete and on

censored samples," Technometrics, vol. 7, no. 4, p. 579588, 1965.

[19] C. Reiss, J. Wilkes and J. L. Hellerstein, "Google cluster-usage traces: format+ schema," Google Inc,

Mountain View, CA, USA, 2011.

