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Executive Summary 

UniServer seeks to improve the performance and energy efficiency in servers by automatically discovering the 

capability of the underlying hardware components to function beyond nominal operating points. By taking 

advantage of the extended margins inherent in processors and memories, the goal is to improve the power 

efficiency of ARM-based micro-servers running in the cloud or edge.  

This report deliverable describes the spiral and incremental integration status as of project month M36 

(January 2019) of the hardware and software components of the UniServer system. The tasks T7.1 - Vertical, 

full system integration and T7.4 - Pointing of small-scale application and evaluation contribute to this 

deliverable. 

This is a status report only; it does not describe the interfaces in detail. For additional information, the reader 

is referred to the documents listed in the References section.  
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1. Introduction 

The UniServer project targets the development of a unique methodology and infrastructure for exposing the 

pessimistic design margins in commercial servers and exploiting them through intelligent power, performance 

and reliability management schemes at the software and hardware layers. This includes the hardware, 

firmware, system software, virtualization, and cloud management layers. 

This report describes the current status of the integration efforts of the UniServer modules. A brief description 

of each module will accompany the description. 

The remainder of this document is structured as follows: section 2 provides an overview of the UniServer 

system, section 3 gives a summary of the hardware/firmware layer, section 4 describes the important 

UniServer modules in the system, section 5 discusses the application layer, and section 6 presents the 

conclusions and directions for future work.  
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2. System Overview 

The UniServer system can be logically divided into four parts: 

Level Description 

Hardware X-Gene2 based “Tigershark” systems or X-Gene3 

based “Osprey” systems  

Firmware HEI, and UniServer system components 

(HealthLog, StressLog and Predictor) 

System Software Linux OS, virtualization extensions such as 

KVM/Qemu, and OpenStack cloud infrastructure 

Application Applications running on bare metal hardware or in 

the context of a VM 

Table 2: UniServer levels 

The newly developed UniServer components are the HealthLog Monitor [4] [8], the StressLog Monitor, and the 

Predictor. These components do not exist in standard system software distributions, and become part of the 

Firmware and System Software levels in the above table. In addition, there has been extensive work focused 

on the virtualization layer, which is part of System Software.  

The hardware components are stress tested during a pre-deployment phase using various stress methods, 

consisting of a combination of micro-viruses (small execution time validation programs) [11] [12] [9] and real 

application benchmarks. The HealthLog Monitor continuously monitors the health status of the hardware under 

a particular voltage/frequency/refresh rate (V-F-R) point and provides the information to other layers in the 

system via vectors describing the performance, power, temperature, and any incurred errors.  

The StressLog Monitor [5] is responsible for testing the hardware components, producing a log file (the 

StressLog) containing a summary of the execution, including observed errors (read from the HealthLog Monitor 

log), observed Silent Data Corruptions (SDCs), application crashes, etc. Typically, the StressLog Monitor is 

called by the Predictor using different V/F configuration parameters, different micro-viruses/benchmarks, etc.  

The Predictor consumes the logs produced by the StressLog Monitor and builds models to estimate safe 

voltage/refresh-rate margins for different operating points. At runtime the upper layers (i.e. the Hypervisor), 

can ask the Predictor for optimal operating points.  

The UniServer layering is shown in Figure 1. 

The Hypervisor attempts to limit the effects of potential faults in higher software layers by reconfiguring the 

system to operate within safe margins and isolating problematic processing and memory resources that affect 

the VMs. This is achieved by utilizing the information delivered by the HealthLog Monitor and the Predictor 

models and developing a new set of configuration properties. Finally, when aging effects are being observed 

by the Hypervisor via the HealthLog Monitor, the Hypervisor can ask the Predictor to rebuild the models which 

in turn, will make the Predictor to call the StressLog Monitor and restart the training cycle. 

The virtual machines are all controlled by the cloud management software, OpenStack. OpenStack controls 

multiple nodes and tries to minimize the energy footprint of the system, while at the same time respecting 

Service Level Agreements. It queries the Hypervisor to identify the trade-offs between energy, performance 

and reliability, and sets nodes at appropriate configurations and schedules VMs. 
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Figure 1: Detailed UniServer Layering 

 

An overview of the modules in the system software layers is shown in the following diagram (Figure 2). 

Correctable errors, 
Uncorrectable errors, 

Cycles, Power, Frequency, 
Voltage, Temperature 

DIMM Refresh Rate, etc.

Stress       

WorkloadsStress 

Daemon

Predictor

Stress Log

HEI

Hypervisor

Health 

Daemon

Request idle time

Invoke Stress Daemon

Stress Output

OpenStack TCO

Stress Output

 

Figure 2: Module Layering 



D7.5: Second Vertical, Full System Integration and Validation Report 

 

© 2019. UniServer Consortium Partners. All rights reserved      12 

3. Hardware/Firmware Layer 

The interface between the X-Gene processor and the system software (Linux) is described in detail in D4.1 

[6]. The API includes a notification interface, the intent of which is to provide an indication of failures during 

undervolting. However, undervolting testing [7] has shown that the first indication of an error is often silent data 

corruption, requiring additional checks in the upper layers.  

3.1 Status 

The X-Gene2 “TigerShark” platforms have been deployed since project month M5; the X-Gene3 “Osprey” 

platforms have been delivered as of project month M20. 

As of project month M31, the API is fully functional on both the X-Gene2 based “TigerShark” and X-Gene 3 

based “Osprey” platforms. This is an I2C based interface running on Centos based Linux 4.11. The notification 

API is layered on top of the standard Linux APEI error reporting interface, leveraging the existing firmware and 

reducing the necessity of custom firmware builds.  

The primary consumer of the HEI API is the HealthLog Monitor, and the integration between the HealthLog 

Monitor and hardware/firmware has been completed. 

3.2 HEI 

The Hardware Exposure Interface ([6]) provides two separate functions: 

 Exposure of architecture-specific sensors and registers via an I2C register map 

 Notification of processor error events 

The I2C register map allows upper layer modules to monitor and control power and frequency for the processor 

and DIMMs. The event notification API provides a straightforward interface for the receipt of error events. The 

HEI has been implemented for both X-Gene2 and X-Gene3. The implementation is quite different, as the 

firmware for each chip shares almost nothing in common. 

3.2.1 Status 

The HEI has been implemented and integrated with the HealthLog Monitor for X-Gene2 and X-Gene3 

platforms supporting all the I2C registers specified in the D4.1 document.  

3.3 HealthLog Monitor 

The HealthLog Monitor ([4] [8]) receives error events from the hardware/firmware via the HEI notification 

interface. HealthLog monitors the state of the system producing a log that is consumed by the StressLog 

Monitor and the Predictor. It also provides an interface for receiving notifications and trigger action upon event 

occurrences. The HealthLog Monitor also features an error testing interface, to ensure that the errors that can 

be reported are correctly parsed by the other modules in the system. In addition, the HealthLog Monitor keeps 

track of some statistical information regarding health-related incidents and provides these statistical data 

through an internal text-based API, on an "on-demand" scheme. 

3.3.1 Status 

As of project month 31 (M31), the HealthLog Monitor has been integrated into the system, and the interfaces 

to the Predictor and StressLog Monitor are being finalized, along with the "on-demand" serviced, as these are 

described on the D4.6. Additional interfaces for reporting high-level information on the log (by the Hypervisor) 

and for interacting with other monitoring services have also been integrated.  
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3.4 StressLog Monitor 

The StressLog Monitor ([5]) can be triggered at any time to run stress tests to produce logs containing the 

details about the observed system’s behaviour (such as aging effects). The tests can be configured in a way 

that combinations of different benchmarks/viruses, bound to different cpu cores, and with different V/F 

parameters can be executed. The module is typically called by the Predictor, which uses the logs to build the 

models to predict the behaviour of the system at different operating points. Alternatively, it can be triggered by 

the system’s administrator or the Hypervisor if aging effects are being detected via the HealthLog Monitor.  

3.4.1 Status 

The StressLog Monitor has been integrated into the system, and the interfaces to the Predictor are being 

finalized. Additionally, it has been integrated with the HealthLog Monitor so it can read the errors that occur 

in the system during the execution of the stress tests. There is one pending integration with the HealthLog 

regarding the hardware counters. The StressLog is ready to support hardware counters from an interface 

perspective, but integration is pending in order to retrieve this data from the HealthLog, when support for 

hardware counters becomes available.  
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4. System Software Layer 

4.1 Linux Platform 

As for the M31 of the project, both TigerShark and Osprey platforms use the Centos 7.3 distribution, featuring 

a Linux 4.11 kernel. 

4.1.1 Status 

Along with the hardware platforms, a Linux distribution supporting the hardware and providing the HEI API has 

been delivered for both “TigerShark” and “Osprey” systems. 

4.2 Predictor  

The safe voltage (and refresh rate for DRAM) predictive mechanism will be based on the StressLog runs. The 

Predictor will drive the StressLog to execute specific workloads that stress the CPU, SoC and DRAM for 

various active core mappings (simply put the ids of active cores) and frequencies under various voltage/refresh 

rate levels. The end result will be a predictor state that will hold the safe voltage for various frequencies and 

active core mappings. Due to high number of active core mappings (255 for 8-core X-Gene2), to minimize the 

StressLog execution time we propose to characterize only the VMIN of: a) the full utilization scenario (8 cores), 

b) each core alone, and c) each PMD alone fully utilized (a PMD holds two cores). Even though this approach 

trade-offs some energy-efficiency potential for faster VMIN characterization, focusing the VMIN predictions on 

fully utilized and isolated core executions has provided significant energy efficiency improvements on Intel 

CPUs as shown by partners [10].  

If the system continuously asks for a non-characterized core mapping, this core mapping can be characterized 

in the next StressLog run to determine a safe voltage for that particular core mapping for improving the energy-

efficiency. For determining the safe voltage of a core mapping, we will characterize the worst-case scenario. 

For instance, if the goal is to find the safe voltage when running 4 cores in clustered configuration (for X-Gene 

2 this translates to two fully utilized PMDs and two fully idle PMDs), we will choose the two most unreliable 

PMDs and perform the VMIN characterization on them. The discovered voltage will be used each time the 

hypervisor requests a voltage for any mapping with 4 clustered cores. This approach provides some safety 

during execution and reduces training time, but some energy-efficiency improvement opportunity is lost.  With 

that said, for enhanced energy-efficiency savings we are currently working on implementing a linear regression 

model based on performance counters that will allow to lower the voltage even more depending on the active 

core mapping and active workload. Partners showed that such model works with success on Intel CPUs. 

Furthermore, we are currently investigating an anomaly detection mechanism. This mechanism will gather live 

monitored performance counters and other sensors data and will attempt to detect an anomaly, and if such 

anomaly exists the voltage/refresh rate margins would have to be reset back to nominal.  

4.2.1 Status 

The interfaces between the Predictor and other software components (Hypervisor, Stress Monitor) have 

already been defined and implemented. The first implementation of the Predictor module is finished with the 

Predictor gathering information from the StressLog and creating a database with virtually zero pfail (probability 

of failure) voltage for different active core mappings and frequencies. These values can be returned to 

Hypervisor when requested. 

4.3 Hypervisor 

The hypervisor stack layer from a top-down view, consists of Libvirt [16], QEMU, the KVM module and the rest 

of the Linux kernel. It is the connection point between the high level (OpenStack) and low-level components 

(Predictor, StressLog, HealthLog) of UniServer. 
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Looking upwards the software stack as Figure 4 shows, the communication entry point for the node is Libvirt.  

Libvirt invokes QEMU, the user-space half of the hypervisor which in turn utilizes KVM, the kernel-space half 

responsible for the low-level interaction between the virtual machine and the host machine. KVM is part of the 

Linux kernel and tightly dependent on the internal structures of it. Therefore, we present KVM and Linux kernel 

as one software entity. All these modules are standard components of the Linux virtualization ecosystem that 

have been extended where needed to support the demands of UniServer. 

On top of the hypervisor layer, Libvirt is a hypervisor-independent virtualization API and toolkit supporting a 

range of operating systems enabling virtualization. Libvirt is used to bridge the communication between 

hypervisor and upper software layers such as OpenStack which is discussed below. The Linux kernel harvests 

any useful information from either HealthLog, HEI or standard OS interfaces (sysfs, procfs). 

Looking downwards the software stack as Figure 3 shows, the Linux kernel coordinates the lower level 

components (as discussed in previous sections) and they in turn, assist it on making decisions. 

4.3.1 Status 

We have extended the C and Python API of Libvirt to receive requests and propagate node related information 

from / to OpenStack to satisfy the requirements of UniServer as described in D5.3. Also, the integration and 

bidirectional information flow with Health Monitor and the Predictor has finished. 

The hypervisor layer relies on the Health Monitor and other components to track the current reliability and 

stability of the system. For example, if a core or set of cores is deemed unreliable, then key processes and/or 

OS & Hypervisor functionality can be migrated to reliable cores. Memory can also be partitioned into reliable 

and unreliable domains. The hypervisor itself will be restricted to allocating memory only from the reliable 

domain. 

Regarding the Linux kernel level of the software stack, a number of techniques and approaches have been 

implemented and characterized w.r.t. the CPU resource, the energy consumption and worst-case behaviour 

in the presence of a transient / permanent hardware fault that may disrupt the execution on the relaxed domain. 

System call migration, page fault migration and scheduler migration are the main techniques we focused on 

during our research in order to proactively improve the relaxed capabilities of the Linux kernel. Apart from the 

target architecture and platform, namely arm64 on the TigerShark and Osprey boards, we have also tested 

this migration idea on the x86 architecture. Besides the academic interest, the benefits of this technique were 

outweighed by the performance overhead which lead to increased energy consumption in both boards and 

both architectures. Also, in the worst-case scenario, where a hardware fault manifests during operating at 

extended margins, the operating system was unresponsive without a chance for applying any reactive 

checkpoint / restore scheme in both the vanilla and our extended version of Linux kernel. 

Figure 3: Hypervisor: looking downwards the 

software stack 

Figure 4: Hypervisor - looking upwards the software stack 
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Interrupt pinning and source isolation are two common available approaches to mitigate critical software 

functionality from possible hardware errors. Both approaches are orthogonal to our developed techniques 

during the research phase and are mostly a matter of system configuration. 

Selective point of operation w.r.t. code criticality e.g. between user-space and kernel-space is difficult to 

flourish due to TigerShark and Osprey board limitations such as high latency of voltage change through the 

existing low-level API. Considering all the trade-offs, deploying a production system, we decided to integrate 

the vanilla-based version of Linux kernel with its existing relaxed capabilities, leaving any migration techniques 

off the final release. Improving the Linux kernel as a monolithic and complex entity to reliably run on more 

aggressive extended margins needs further research and testing in our opinion. 

In addition, we have designed and implemented two CPU governors that the hypervisor can utilize to improve 

energy efficiency of the system or limit the CPU power consumption under a power consumption cap.  

The first governor supports only x86 architecture and targets to improve energy efficiency of the CPU at the 

granularity of the exciting workload. Specifically, our characterization process of various x86 chips shows that 

a safe underscaled voltage point (𝑉𝑚𝑖𝑛)  – no manifestation of any kind of error that leads to a system crash – 

depends on the exciting workload. Based on this observation, we extracted and associated key performance 

characteristics for a representative set of workloads with their corresponding 𝑉𝑚𝑖𝑛 and thus created a model 

that can provide safe underscaled voltage points for any kind of workload. To this end, we deployed a governor 

that constantly monitors these performance counters of the system, passes them in our model and applies the 

new 𝑉𝑚𝑖𝑛, that our model suggests, to further improve the energy efficiency of the CPU. 

The second governor supports both arm64 and x86 architectures and targets to minimize the performance 

penalties when the CPU operates under a tight power cap. Specifically, conventional CPU power capping 

mechanisms, like Intel’s R.A.P.L, limit the CPU power consumption under a cap, by scaling only the frequency 

operating point of the CPU. Eventually, this is translated as a performance penalty to the exciting workload. 

Our governor exploits voltage underscaling and targets to meet the same power caps as conventional 

mechanisms, but with significant higher frequency operating points. This is achieved because our governor 

firstly reduces the voltage operating point of the CPU and if the power consumption reduction is not enough to 

meet the applied power cap, only then reduces the CPU operating frequency. 

Furthermore, in order to protect the system from catastrophic errors from memory, we have developed a 

mechanism that can provide elevated memory protection to critical OS and application software data, while 

allowing less critical application data (e.g. heap) to be stored within memory domain(s) whose energy-

efficiency and reliability could be adjusted. We call our protection mechanism, heterogeneous-reliability 

memory framework.  

 

Figure 5. Overview of memory allocation for application running on heterogeneous-reliability memory framework 

Figure 5 presents a heterogenous-reliability memory framework and examples of applications allocating 

memory in this framework.  Particularly, in this example, APP 1 and APP 2 assign all the application data is to 

either the RelMem domain (the reliable domain) or the VarMem domain (the domain with varying reliability). 
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To implement such a framework, we disabled memory interleaving on X-gene2 servers, which enables us to 

allocate data on a specific Memory Controller Unit (MCU) and thus specific memory domain (RelMem or 

VarMem). We are utilizing the 4 Memory Controller Units to divide the available address space into 4 separate 

memory domains, whose reliability could be controlled independently by adjusting the supply voltage and 

refresh rate depending on the criticality of the stored data. To enable the application control data allocation on 

RelMem and VarMem, we introduce 4 fake NUMA (Non-Uniform Memory Allocation) domains, each of which 

is assigned to the physical memory space that belongs to a specific MCU. We modified the standard NUMA 

interfaces to allow the application allocate data on RelMem or VarMem. Specifically, we allocate data for 

application using the numactl command; the parameter –membind can be passed to numactl to define a NUMA 

memory domain that will be used for data allocation. 

However, by disabling memory interleaving, we introduce an average performance overhead of 49.39%, as 

the memory bandwidth is not fully exploited. To reduce this performance overheads, we implement a software 

interleaving technique that decreases the average overhead down to 7%, while providing 9% energy 

consumption reduction when relaxed memory parameters are applied. 

 

Figure 6. Performance overhead manifested for memory with disabled interleaving (Non-interleaved system) and 

memory with enabled software-level interleaving (Shimmer) 

Figure 6 presents the performance overhead introduced when we disable interleaving (Non-interleaved 

system) and enable software-level interleaving (Shimmer) compared to the baseline configuration for the 

SPEC and NAS benchmarks. We calculate this overhead by measuring the execution time of each benchmark 

for the two configurations normalized to the execution times obtained for the default server configuration. Note 

that, in this figure, we use benchmark identification numbers instead of the whole SPEC benchmark names.  

We modified KVM and QEMU to enable running VMs on heterogenous-reliability memory, allocating all the 

VM data on VarMem. Our modifications allow the user either to run VMs allocating all the data on VarMem, or 

allocate on VarMem only the data of an application running within a VM.  

We had initially implemented our framework on the x86 architecture by utilizing the different sockets of a server 

to differentiate the memory domain. The x86 framework was mainly used for characterization of the DRAM as 

there were considerable performance overhead. Our modified hypervisor is extended with the heterogeneous-

reliability memory framework for the arm64 architecture on the Tigershark and Osprey boards.  

4.4 OpenStack 

OpenStack is the cloud management framework selected for handling virtual machines within the UniServer 

environment. OpenStack enables the datacentre owners to control the whole lifecycle of VΜs (creation, 

deletion, migration etc.), networking between VMs and monitoring for the whole infrastructure. The monitoring 

part is related to compute nodes resources availability, and performance metrics. Among all the components 

in OpenStack the following have been extended to benefit from the functionalities enabled by UniServer: 
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 Ceilometer: OpenStack telemetry system, capable of monitoring virtual and physical metrics. 

 Nova: responsible for handling the lifecycle of virtual machines, from creation to destruction; it also 
handles the physical resources on each compute node assigning them to VMs. 

 Horizon: web-based user interface used to interact with OpenStack installation. The relationship 
between the hypervisor and OpenStack is shown in the following diagram: 

 

 

Figure 7: Hypervisor and OpenStack relationship 

 

The integration of the extended Ceilometer component was discussed already in [13]. With respect to the 

previous integration report OpenStack Nova and Horizon were the focus of development activities. Figure 7 

shows how the extended Nova and Horizon components interact with each other and with the rest of the 

UniServer software stack.  

Two of the Nova sub-components were extended for UniServer: the scheduler and the compute node 

manager. The scheduler is in charge of accepting VM creation requests and, by observing the current status 

of the compute nodes, schedule VMs according to their resource requirements (e.g., memory, VCPUs, disk, 

etc.). The extension to the scheduler aims at reducing the power consumption of the data centre by leveraging 

the relaxed operating mode of UniServer nodes when scheduling VMs. According to the VM priority (translated 

into revenue generation) the scheduler selects the destination node, trying to maximize the number of nodes 

running in relaxed margins and minimize the probability of failure. The Nova compute node manager was 

extended to implement de-centralized pro-active fault tolerance by using the predictor component of the 

UniServer software stack. Each compute node is autonomously polling the predictor accessible through the 

hypervisor to estimate how safe is the current operating mode. If a node is self-identified as unsafe all the high-

value VMs are migrated to safer nodes. This functionality enables more scheduling policies to be implemented 

for further power saving. The combination of the extensions to the scheduler and compute node manager aims 

at a further reduced energy footprint of a cloud datacentre without impacting the service level perceived by the 

user. 

The web-based user interface, Horizon, was extended accordingly to present the user with the enhanced 

information available for UniServer compute nodes. 

A comprehensive description of the above extended components is available in [14] and [15]. 
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4.4.1 Status 

The extended Nova and Horizon components were successfully tested on two X-Gene2 based “Merlin” boards. 

The extended Nova is able to schedule VMs according to the current operating mode of the two nodes. Nova 

is also able to switch the operating mode of a node by directly using the UniServer extended Libvirt interface. 

UniServer related data is exposed to the user via the Horizon dashboard. The above components are also 

integrated with the previously discussed Ceilometer extensions providing enhanced metering capabilities, 

enriched with the unique set of information provided by a UniServer system. 
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5. Application Layer 

There are three target applications for UniServer, listed in Table 3. 

Application Provider 

Wireless jamming detection WSE 

Polaris Regulatory Reporting Platform Meritorious 

Social Network Server SocialCRM/SocialTV SPA 

Table 3: UniServer target applications 

The applications do not have any specific interfaces to the UniServer system; they remain agnostic about the 

type of platform they are executing on. 

5.1 WSE Wireless Jammer Detector 

The SDR Jammer Detector is a wireless security component of the Denial of Service (DoS) Sensing solution. 

The detector identifies jamming signal threats that aim to generate DoS attacks by interfering with wireless 

network communications. For this purpose, this solution implements a smart sensor that detects threats and 

communicates detection events to visualization software so that users can easily identify the type of jamming 

signal generating the attack. 

5.1.1 Status 

The WSE Wireless Jammer Detector application has been the first priority. It was the showcase of the first 

UniServer demonstration, performed during project month 22 (November 2017).  A few minor adjustments 

were made to the application since, and it has been tested during the third year of the project. More in-depth 

characterisation is currently underway, and the results will be reported in the deliverables D7.8 and D7.9 

5.2 MER: Polaris Regulatory Reporting Platform 

European Markets Infrastructure Regulation (EMIR) came into force on 16 August 2012, and introduced 

requirements aimed at improving the transparency of Over-The-Counter (OTC) derivatives markets and to 

reduce the risks associated with those markets. In order to achieve this, EMIR requires that OTC derivatives 

meeting certain requirements be subject to the clearing obligation and for all OTC derivatives that are not 

centrally cleared that risk mitigation techniques apply. In addition, all derivatives transactions need to be 

reported to Trading Repositories (TRs).  

The reporting of a derivative transaction involves any daily modifications/updates of the transaction until the 

termination of the derivative contract. This requires the processing and validation of a large amount of 

information and handling sensitive client’s data.  

Polaris was developed to support our clients on the obligation, to the EMIR, for all EU counterparties to 

derivative transactions to report such transactions to Trade Repositories (TR) – entities licensed and regulated 

by the European Securities and Markets Authority (ESMA) who shall collect and maintain the records of all 

derivatives trade-related data. 

The reporting of a derivative transaction should take place at T+1 day, where T is the date where the 

transaction was executed, and it involves any daily modifications/updates of the transaction until the 

termination of the derivative contract.  

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32012R0648:EN:NOT
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 The complete solution of Polaris platform provides validation of the reporting and speedups the 
process as compared to reporting directly to Trade Repositories.  

 The platform provides additional compliance checks in the reported trades to ensure the validity of the 
reported information also from the compliance aspect. 

5.2.1 Status 

The Polaris Platform has been completely migrated to the ARM based UniServer platform and in addition, the 

Micro Polaris Benchmark was developed, as an open source approximation of the original platform, to be 

distributed with the StressLog application.   

5.3 SPA: Social Network Server SocialCRM/SocialTV 

The two SPA apps (Social CRM and Social TV) share the same three architectural components: 

The social network server component which runs on a large data center  

The social analytics components that run on client's premises and which process data from the server 

regarding specific subscribed events 

The web app, which also runs on client's premises and that connects to a database with the results of the 

social analytics component to allow their exploration 

5.3.1 The social network server component 

The social network server represents a server serving a typical social network such as Facebook. It implements 

queries to post content (e.g. messages or photos), retrieve friends, add interests etc. plus other more complex 

social network queries for analyzing user’s behavior that are useful for the social network provider. The social 

network server is tested using the LDBC Social Network Interactive benchmark (LDBC-SNB), which is a state-

of-the-art benchmark for linked data technologies, for which an implementation is provided.  

LDBC-SNB uses synthetically generated data, which simulates a real social network in time. This dataset is 

bulk loaded into the server to set it into a working state, and spans several years of social network activity. 

Additionally, the synthetic datasets also contain "update" streams, which basically consist of the update activity 

in the social network (new messages, new friends, etc.) in the subsequent months in the simulation that have 

not been bulk loaded, but are fed into the driver, which is responsible for issuing these updates at runtime. 

Also, parameters are provided to the driver to perform read queries.  

The goal of the social network server component is to test and understand how the underlying technology 

graph database technology behaves on the UniServer platform on workloads like the ones modeled by the 

benchmark, which can fit both the large-scale server the smaller edge computing use cases. 

5.3.2 The social analytics component 

The analytics component, which is installed in client's premises, receives periodic batches of updates on those 

specific events tracked. For instance, imagine a client A wants to track the activity related to Donald Trump. 

The social network server will buffer this activity and from time to time or when a buffer is filled it will send that 

to the client (the social analytics component). From time to time, the client will process the data and combine 

(or not) with the previous data, and update its snapshot of information with the most recent data received from 

the server. The type of processing is like finding influencers, detecting communities, etc. 

The goal of this component is to test how the underlying technology behaves in workloads that involve 

executing expensive graph analytics algorithms such as community detection, influencers detection, or interest 
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similarity for recommendation engines based on collaborative filtering. Such algorithms are typically run 

periodically on the latest available data, in batches.  

5.3.3 The web app component 

For the web app, we must guarantee that this is interactive and available. This is similar to the social network 

server. We could measure the latency of the requests and the user experience. Assuming a workday of 8 

hours, an SLA of 99% would guarantee a non-availability of at most 5 minutes per day. This seems reasonable. 

Although these components will be delivered for visualization purposes, the goal is not to test them as these 

are out of the business of what SPA provides as a technology provider. 

5.3.4 Status  

We have provided all the necessary stuff to test the social network server, including preloaded datasets, scripts 

to install and run the server as well to parse and understand the results. The implementation of the social 

network server is provided here (https://github.com/DAMA-UPC/ldbc-sparksee), while the UniServer related 

stuff (DockerFiles, scripts to download data, Sparksee license etc.) can be found here (https://hpdc-

gitlab.eeecs.qub.ac.uk/aprat/uniserver-ldbc-sparksee). Additionally, a preloaded VM with the application has 

been provided. Finally, note that an ARM compatible version has been developed for this Project. 

We have developed the two social analytics components, the SocialCRM (community detection, influencers 

identification) and SocialTV (recommender engines based con collaborative filtering). Such components can 

be found in (https://hpdc-gitlab.eeecs.qub.ac.uk/Jordi.Urmeneta/uniserver-spa-socialcrm) and (https://hpdc-

gitlab.eeecs.qub.ac.uk/Jordi.Urmeneta/uniserver-spa-media) respectively, which not only provide the 

application but also DockerFiles and scripts to run them in containers. Additionally, the SocialCRM app has 

been integrated within a VM to be easily distributed among partners 

.  

https://github.com/DAMA-UPC/ldbc-sparksee
https://hpdc-gitlab.eeecs.qub.ac.uk/aprat/uniserver-ldbc-sparksee
https://hpdc-gitlab.eeecs.qub.ac.uk/aprat/uniserver-ldbc-sparksee
https://hpdc-gitlab.eeecs.qub.ac.uk/Jordi.Urmeneta/uniserver-spa-socialcrm
https://hpdc-gitlab.eeecs.qub.ac.uk/Jordi.Urmeneta/uniserver-spa-media
https://hpdc-gitlab.eeecs.qub.ac.uk/Jordi.Urmeneta/uniserver-spa-media
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6. Conclusions and Future Work 

This report deliverable has described the developments and enhancements of the UniServer system at the 

hardware, system, and application layers in the period between month M21 and M31. The modules at each 

layer have been discussed, as well as the level of integration. The remainder of the project will focus on 

preparing all components on the target hardware, both X-Gene2 and X-Gene3 based platforms, for the final 

UniServer project presentation.   
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